MOULDED CASE CIRCUIT BREAKERS MSX

General technical data page 2
Time/Current characteristics
Compact MCCBs - MSXc page 7
Traditional MCCBs - MSX page 12
Electronic MCCBs - MSXE page 21
MCCBs with residual current protection - MSXD page 37
Accessories (auxiliary contacts, releases, motor operator, rotary handles and interlock)
Compact MCCBs - MSXcpage 41
Traditional MCCBs (MSX), electronic MCCBs (MSXE), MCCBs with RCD (MSXD) page 50
Automatic transfer switch page 68
Connections and temperature ratings
Compact MCCBs - MSXc page 77
Traditional MCCBs (MSX), electronic MCCBs (MSXE), MCCBs with RCD (MSXD) page 82
Dimension
Circuit breakers (fixed and plug-in version/with and without motor operator) page 90
Direct and transmitted rotary handles page 148
Terminal covers and interpole barriers page 157
Link and wire mechanical interlocks page 163

MSX moulded case circuit breaker

Technical data

Key:

$\begin{array}{ll}\text { Csupplied as standard } & { }^{1} \text { max 225A } \\ { }^{2} \text { optional } & \text { max 536A }\end{array}$
-not available

For technical information contact the Technical Assistance Service or visit gewiss.com

MSX 400	MSXE 400 - MSXE 630	MSXE 1000		MSXE 1250	MSXE 1600
IEC EN 60947-2	IEC EN 60947-2	IEC EN 60947-2		IEC EN 60947-2	IEC EN 60947-2
400	400,630	800	1000	1250	1600
A	$\begin{aligned} & \text { B (MSXE 400) } \\ & \text { A (MSXE 630) } \end{aligned}$	B	A	B	B
-	(for MSXE 400)	10	-	15	20
3.3+N,4	3.3+N,4	3.4		3.4	3.4
50/60	50/60	50/60		50/60	50/60
690 AC-250 DC	690 AC	690 AC		690 AC	690 AC
8	8	8		8	8
IV	IV	IV		IV	IV
800	800	800		800	800
50 85	50 85	85	85	85	85
36	36 50	50	50	50	50
$30-45$	$25 \quad 45$	50	45	45	45
22 30	15 30	30	30	30	30
15 20	10 20	20	20	20	20
40×40	- -	-	-	-	-
50 85	50 85	85	65	65	65
36 - 50	36 50	50	38	38	38
$30-45$	25 45	50	34	34	34
22 30	15 30	30	23	23	23
15 15	10 15	20	15	15	15
$40 \quad 40$	- -	-	-	-	-
Adjustable thermal Adjustable magnetic	Electronic LSI Electronic LSIG	Electronic LSI Electronic LSIG		Electronic LSI Electronic LSIG	Electronic LSI Electronic LSIG
Fixed Plug-in	Fixed Plug-in ${ }^{2}$	Fixed, Plug-in	Fixed	Fixed	Fixed
no	no	no		no	no
any	any	any		any	any
yes	yes	yes		yes	yes
-	-	-	-	-	-
-	\square	-	-	-	-
\square	\square	\square	-	-	-
\square	\square	-	-	-	-
\square	\square	\square	\square	-	-
4,500	4,500	4,000		4,000	2,000
15,000	15,000	10,000		5,000	5,000
yes	yes	yes		yes	yes
Lever / Cable	Lever / Cable	Lever / Cable		Cable	Cable
$-5+65$	$-5+65$	$-5+65$		$-5+65$	$-5+65$
50	40	40		40	40
$-20+65$	$-20+65$	$-20+65$		$-20+65$	$-20+65$
$65^{\circ} \mathrm{C}$ - RH 95\%	$65^{\circ} \mathrm{C}$ - RH 95\%	$65^{\circ} \mathrm{C}$ - RH 95\%		$65^{\circ} \mathrm{C}-\mathrm{RH} 95 \%$	$65^{\circ} \mathrm{C}$ - RH 95\%
140 / 185	140/185	210/280		210/280	210/280
260	260	273		370	370
103	103	103		120	140
$4.3 / 5.6$	$\begin{gathered} 4.3 \text { / } 5.7 \text { (MSXE 400) } \\ 5 / 6.5 \text { (MSXE } 630) \end{gathered}$	$9.1 / 12.3$	11/14.8	19.8 / 25	$27 / 35$

Switch disconnector MSXM

Technical data

TYPE	MSXM 160c	MSXM 250c	MSXM 400 - MSXM 630
Standard	IEC EN 60947-3	IEC EN 60947-3	IEC EN 60947-3
Rated uninterrupted current (lu) (A)	160	250	400,630
Utilization category	$\begin{aligned} & A C-23 A \\ & D C-22 A \end{aligned}$	$\begin{aligned} & \text { AC-23A } \\ & D C-22 A \end{aligned}$	$\begin{aligned} & A C-23 A \\ & D C-22 A \end{aligned}$
Number of poles	3.4	3.4	3.4
Rated frequency (Hz)	50/60	50/60	50/60
Rated operating voltage (Ui) (V)	690 AC-250 DC	690 AC-250 DC	$690 \mathrm{AC}-250 \mathrm{DC}$
Rated impulse withstand voltage (Uimp) (kV)	8	8	8
Overvoltage category	IV	IV	IV
Rated insulation voltage (Ui) (V)	690	800	800
Rated short-circuit making capacity (Icm) (kA)	2.8	6	9
Brief allowable rated current for 0.3s (lcw) (kA)	2	3	5
Versions (kA)	Fixed	Fixed	Fixed Plug-in ${ }^{1}$
Mounting on DIN rail by means of the accessory	yes	yes	no
Mounting position	any	any	any
Upline/downline power supply	yes	yes	yes
Front for cables (FW)	-	-	- -
Front (FC)	-	-	-
Terminals Front extended (FB)	\square	\square	\square
Front extended spread terminals (FB)	\square	\square	\square
Rear (RC)	\square	\square	\square
Electrical life (415 V AC) $\begin{array}{r}\text { (No. } \\ \text { cycles) }\end{array}$	10,000	6,000	4,500
Mechanical life	20,000	18,000	15,000
Can be equipped with motor operator	no	yes	yes
Interlock type	-	Lever / Cable	Lever / Cable
Operating temperature (${ }^{\circ} \mathrm{C}$)	$-5+65$	$-5+65$	$-5+65$
Reference temperature (${ }^{\circ} \mathrm{C}$)	50	50	50
Storage temperature (${ }^{\circ} \mathrm{C}$)	$-20+65$	$-20+65$	$-20+65$
Tropicalization	$65^{\circ} \mathrm{C}$ - RH 95\%	$65^{\circ} \mathrm{C}$ - RH 95\%	$65^{\circ} \mathrm{C}$ - RH 95\%
Width (3P / 4P) (mm)	75/100	105/140	140 / 185
Dimensions \quad Height (mm)	130	165	260
Depth (mm)	68	68	103
Weight (3P / 4P) (kg)	$0.7 / 0.9$	1.5 / 1.9	4.2 / 5.6 (MSXM 400) 4.4 / 5.8 (MSXM 630)

Key:

- supplied as standard ${ }^{1}$ max 536A
- optional
-not available

For technical information contact the Technical Assistance Service or visit gewiss.com

MSXM 1000	MSXM 1250	MSXM 1600
IEC EN 60947-3	IEC EN 60947-3	IEC EN 60947-3
800	1250	1600
$\begin{aligned} & \text { AC-23A } \\ & D C-22 A \end{aligned}$	$\begin{aligned} & \text { AC-23A } \\ & D C-22 A \end{aligned}$	$\begin{aligned} & \text { AC-23A } \\ & D C-22 A \end{aligned}$
3.4	3.4	3.4
50/60	50/60	50/60
690 AC - 250 DC	$690 \mathrm{AC}-250 \mathrm{DC}$	$690 \mathrm{AC}-250 \mathrm{DC}$
	8	8
IV	IV	IV
800	800	800
17	32	45
10	15	20
Fixed, Plug-in	Fixed	Fixed
no	no	no
any	any	any
yes	yes	yes
-	-	-
-	-	-
\square	\square	\square
-	-	-
\square	-	\square
4,000	4,000	2,000
10,000	5,000	5,000
yes	yes	yes
Lever / Cable	Cable	Cable
$-5+65$	$-5+65$	$-5+65$
50	50	50
$-20+65$	$-20+65$	$-20+65$
$65^{\circ} \mathrm{C}$ - RH 95\%	$65^{\circ} \mathrm{C}$ - RH 95\%	$65^{\circ} \mathrm{C}$ - RH 95\%
210/280	210 / 280	$210 / 280$
273	370	370
103	120	140
8.5 / 11.5	18.2 / 23.4	24.9 / 32.9

Coordination between switch disconnectors and MCCB's - 400/415V AC

SWITCH DISCONNECTORS										
CIRCUIT BREAKERS	RANGE	Icu (kA)	MSXM 160c	MSXM 250c	MSXM 400	MSXM 630	$\begin{aligned} & \text { MSXM } 1000 \\ & (800 \mathrm{~A}) \end{aligned}$	$\begin{aligned} & \text { MSXM } 1000 \\ & (1000 \mathrm{~A}) \end{aligned}$	MSXM 1250	MSXM 1600
	M5X 160c	16	16							
		25	25							
		16		16						
	MSX 250c	25		25						
		25		25						
	MSX/E/D 160	36		36						
		65		36						
		25		25						
	MSX/E/D 250	36		36						
		65		36						
		36			36					
	MSX/E 400	50			50					
		36				36				
	MSXE 630	50				50				
	MSXE 1000 (800A)	50					50			
	MSXE 1000 (1000A)	50						50		
	MSXE 1250	50							50	
	MSXE 1600	50								50

Thermal magnetic MCCB + RCD MSXD
Technical data

TYPE	MSXD 125	MSXD 160 - MSXD 250
Standard	IEC 60947-1 IEC 60947-2 IEC 60755	IEC 60947-1 IEC 60947-2 IEC 60755
Rated current (In) (A)	20, 32, 50, 63, 100, 125	160, 250
Utilization category	A	A
Number of poles	$3 \mathrm{P}+\mathrm{N}$	$3 \mathrm{P}+\mathrm{N}$
Rated frequency (Hz)	50/60	50/60
Rated operating voltage (Ui) (V)	525 AC	525 AC
Rated impulse withstand voltage (Uimp) (kV)	8	8
Overvoltage category	IV	IV
Rated insulation voltage (Ui) (V)	525	525
Rated breaking capacity (Icu)		
220/240V (kA)	35 年 50	35 年 65
Alternating current 400/415V (kA)	25 36	25 - 36
Alternating current 440V (kA)	15 25	15 25
525 V	8 - 22	10 25
Service breaking capacity (lcs)		
220/240V (kA)	27 50	27 65
Alternating current 400/415V (kA)	19 36/30	19 36
Alternating current 440V (kA)	12 25	12 25
525 V (kA)	6 - 22	7.5 25
Type of protection	Adjustable thermal Fixed magnetic	Adjustable therma Fixed magnetic
Versions	Fixed	Fixed
Mounting on DIN rail by means of the accessory	yes	yes
Mounting position	any	any
Upline/downline power supply	yes	yes
Front for cables (FW)	\square	-
Front (FC)	\square	-
Terminals Front extended (FB)	\square	\square
Front extended spread terminals (FB)	-	-
Rear (RC)	\square	\square
Electrical life (415 V AC) (No. cycles)	30,000	10,000
Mechanical life (No. cycles)	30,000	10,000
Can be equipped with motor operator	yes	yes
Interlock type	-	-
Operating temperature (${ }^{\circ} \mathrm{C}$)	$-5+65$	$-5+65$
Reference temperature (${ }^{\circ} \mathrm{C}$)	50	50
Storage temperature (${ }^{\circ} \mathrm{C}$)	$-20+65$	$-20+65$
Tropicalization	$65^{\circ} \mathrm{C}$ - RH 95\%	$65^{\circ} \mathrm{C}$ - RH 95\%
Width (3P / 4P) (mm)	120	140
Dimensions Height (mm)	155	165
Depth (mm)	68	68
Weight (3P / 4P) (kg)	1.4	1.9
$\begin{array}{ll}\text { Key: } & \quad \text { optional } \\ \text { ■supplied as standard } & \text {-not available } \\ \text { For technical information contact the Technical Assistance Service or visit gewiss.com }\end{array}$		

COMPACT MCCB WITH THERMAL AND MAGNETIC PROTECTION msx 160c - msx 250c

3 Pole MCCB

MCCB Adjustment Dial

The MSXc range is available in 2 frame sizes, 160 A and 250 A . Interrupting capacities of 16 kA and 25 kA are offered in 3 and 4 pole versions.
160A MCCBs are extremely compact in size (W75 H130 D68) and offer space saving solutions for electrical power distribution where the installation size is critical. 160A models have adjustable thermal and fixed magnetic settings. 250A MCCBs have adjustable thermal and adjustable magnetic settings.

COMPACT MCCB WITH THERMAL AND MAGNETIC PROTECTION msx 160c-msx 250c

ADJUSTMENT DIALS

- I_{R} is the thermal element adjustment dial and is used to set the rated current to match the conductor rating. I_{R} can be set between 0.63 and 1.0 times I_{n}.
- I_{i} is the magnetic element adjustment dial and is used to set the short circuit tripping threshold to suit the application. It is fixed on 160A frame.

Models, ratings and settings

Model	Breaking capacity	Rated current $\mathrm{I}_{\mathrm{n}}(\mathrm{A})$	Magnetic trip current $\mathrm{I}_{\mathrm{i}}(\mathrm{A})$
MSX 160c	16 kA	25,40	600
		63, 80	1000
		100, 125	1500
		160	1600
	25 kA	25,40	600
		63, 80	1000
		100, 125	1500
		160	1600
MSX 250c	16 kA	160	5-8-10-13x In
		250	5-7-9-11x In
	25 kA	160	5-8-10-13x In
		250	5-7-9-11x \ln

Magnetic trip tolerance $+/-20 \%$

COMPACT MCCB WITH THERMAL AND MAGNETIC PROTECTION msx 160c - msx 250c

Time/Current Characteristics

MSX 250c (160A)

Percent Rated Current

MSX 250c (250A)

Peak Current Characteristics

MSX 250c at 400/415V AC

MSX 250c at 440V AC

COMPACT MCCB WITH THERMAL AND MAGNETIC PROTECTION msx 160с - msx 250c

Specific Let-Through Energy Characteristics

MSX 160c at 400/415V AC

MSX 250c at 400/415V AC

MSX 250c at 440V AC

MCCB WITH THERMAL AND MAGNETIC PROTECTION msx 125 - msx 160-msx 250 - msx 400

3 Pole MCCB

MCCB Adjustment Dial

All standard 3 pole and 4 pole thermal magnetic models have adjustable thermal and adjustable magnetic characteristics.
An adjustable magnetic characteristic allows short-circuit protection to be matched to the load and supply characteristics, for example motor inrush currents or generator short-circuit currents.
Lowering the short-circuit tripping threshold can allow a higher earth-loop impedance in an installation and provide end-of-cable protection with the correct disconnection times.

ADJUSTABLE DIALS

- I_{R} is the thermal element adjustment dial and is used to set the rated current to match the conductor rating. I_{R} can be set between 0.63 and 1.0 times I_{n}.
- I_{i} is the magnetic element adjustment dial and is used to set the short circuit tripping threshold to suit the application.
I_{i} Can be set to the values shown in the table below:

Models, ratings and settings

Model	Breaking capacity	Rated current $\mathrm{I}_{\mathrm{n}}(\mathrm{A})$	Magnetic trip current $\mathrm{I}_{\mathrm{i}}(\mathrm{A})$
MSX 125	36 kA	20, 32, 50, 63, 100	6-8-10-12 x In
		125	6-8-10 x ln
	65 kA	20,32,50,63, 100	6-8-10-12 x/n
		125	6-8-10 x ln
MSX 160	36 kA	160	6-8-10-13 x/n
	65 kA	160	6-8-10-13 x/n
MSX 250	36 kA	250	6-8-10 x/n
	65 kA	250	6-8-10x1n
MSX 400	36 kA	400	6-7-8-9-10-11-12 x/n
	65 kA	400	6-7-8-9-10-11-12xin

MOTOR PROTECTION

MCCBs feeding motors are often only required to provide protection from short-circuits. Overload protection is provided by a dedicated thermal or electronic overload relay. MCCBs without thermal protection elements are available for this application. Four pole MCCBs with magnetic trip only have protection on the neutral pole as standard.

MCCB WITH THERMAL AND MAGNETIC PROTECTION msx 125 - msx 160 - msx 250 - msx 400

Time/Current Characteristics

MSX 125 (from 20A to 100A)

MSX 125 (125A)

MCCB WITH THERMAL AND MAGNETIC PROTECTION msx 125 - msx 160 - msx 250 - msx 400

MSX 160

MSX 250

MCCB WITH THERMAL AND MAGNETIC PROTECTION msx 125 - msx 160-msx 250 - msx 400

MSX 400

MCCB WITH THERMAL AND MAGNETIC PROTECTION msx 125 - msx 160 - msx 250 - msx 400

Peak Current Characteristics

MSX 160, MSX 250 at 400/415/440V AC

Prospective short circuit current in RMS sym. (kA)

MSX 160, MSX 250 at 690V AC

Prospective short circuit current in RMS sym. (kA)

MCCB WITH THERMAL AND MAGNETIC PROTECTION msx 125 - msx 160-msx 250 - msx 400

MSX 400 at 690 V AC

MCCB WITH THERMAL AND MAGNETIC PROTECTION msx 125 - msx 160 - msx 250 - msx 400

Specific Let-Through Energy Characteristics

MSX 160, MSX 250 at 400/415/440V AC

MSX 125 at 690V AC

Prospective short circuit current in RMS sym. (kA)

MSX 160, MSX 250 at 690V AC

MCCB WITH THERMAL AND MAGNETIC PROTECTION msx 125 - msx 160 - msx 250 - msx 400

MSX 400 at 690V AC

Prospective short circuit current in RMS sym. (kA)

MCCB WITH ELECTRONIC PROTECTION

MSXE 160 - MSXE 250 - MSXE 400 - MSXE 630 - MSXE 1000 - MSXE 1250 - MSXE 1600
MSXE MCCBs from 250A frame to 1600A frame are available with electronic protection units. Current ratings, In, of 40A, 125A, 160A, 250A, 400A, 630A, 800A, 1000A, 1250 A and 1600 A are available. These offer great f lexibility as their characteristics can be set to suit a wide range of application conditions.
Overload protection can be set between 0.4 and 1.0 times I_{n}.

Every electronic protection unit includes overload protection (L), delayed short-circuit protection (S) and instantaneous protection (I) as standard.

Electronic Protection Characteristic

Ground Fault Trip (CF)

This function trips the MCCB after time delay, t_{g}, if the ground fault current exceeds the preset threshold, I_{g}.
Ground fault protection can be enabled and disabled by operating a DIP switch on the electronic protection unit. An external current transformer is necessary if the ground fault trip function is required on a 3 pole MCCB, in a 3 phase, 4 wire system.
The ground fault trip function is available from 400A to 1600A.

Neutral Protection (NP)

Neutral protection (available only for 4P versions) can be adjusted at 100\% or 50\% from 400A frame to 1600 A frame.

MCCB WITH ELECTRONIC PROTECTION

MSXE 160 - MSXE 250 - MSXE 400 - MSXE 630 - MSXE 1000 - MSXE 1250 - MSXE 1600

ADJUSTMENT DIALS

The left adjustment dial sets the rated current to match the conductor rating. The right adjustment dial selects one of seven preset characteristics on 400A, $800 \mathrm{~A}, 1250 \mathrm{~A}$ and 1600 A models, and one of six preset characteristics on 630 A and 1000 A models, and one of 5 preset characteristics on 250 A model.
The effects of the left adjustment dial (labelled $I_{\mathrm{R}}(\mathrm{A})$), and the right adjustment dial (labelled Characteristics) are detailed in the tables shown underneath each time / current graph.

Tolerances of Characteristics

Characteristics		Tolerance
Long Time Delay (L)	I_{R}	Tripping when ($\left.\mathrm{I}_{\mathrm{R}} 1.05\right)$ < load current $(\cdot)\left(I_{\mathrm{R}} 1.25\right)$
	t_{R}	$\pm 20 \%$
Short Time Delay (S)	$\mathrm{I}_{\text {sd }}$	$\pm 15 \%$
	$\mathrm{t}_{\text {sd }}$	Total clearing time +50 ms , resettable time -20 ms
Instantaneous (1)	l_{i}	$\pm 20 \%$
Ground Fault Trip (GF)	I_{5}	$\pm 15 \%$
	tg_{5}	Total clearing time +50 ms , resettable time -20 ms
Neutral Protection (NP)	I_{N}	Tripping when ($1_{N} 1.05$) < load current $(\cdot)\left(1_{N} 1.3\right)$

MCCB WITH ELECTRONIC PROTECTION

MSXE 160 - MSXE 250 - MSXE 400 - MSXE 630 - MSXE 1000 - MSXE 1250 - MSXE 1600
Time/Current Characteristics

MSXE 160, MSXE 250

$I_{n}=250 A ; 160 A ; 125 A ; 40 A^{(1)}$

Note

${ }^{\text {(1) }}$ For Plug-in (PM), max. setting for I_{R} should be less than 225A. When $I_{n}=250 \mathrm{~A}$, I_{R} should be $I_{n} 0.9$ or less.
${ }^{(2)} \mathrm{I}_{\mathrm{i}}$ max. $=13 \mathrm{x} \mathrm{I}_{\mathrm{n}}$.
${ }^{(3)}$ Characteristic of neutral protection $\left(t_{N}\right.$ vs. $\left.I_{N}\right)$ is identical to characteristic of phase protection (t_{R} vs. $\left.I_{R}\right)$.

MCCB WITH ELECTRONIC PROTECTION
MSXE 160 - MSXE 250 - MSXE 400 - MSXE 630 - MSXE 1000 - MSXE 1250 - MSXE 1600

$I_{n}=400 \mathrm{~A}$

$\mathrm{I}_{\mathrm{R}}(\mathrm{A})$		$x \mathrm{ln}$	0.4	0.5	0.63	0.8	0.9	0.95	1.0
Characteristics		No.	1	2	3	4	5	6	7
L	$\mathrm{t}_{\mathrm{R}}(\mathrm{s})$		11	21	21	5	10	19	29
			at $200 \% \times \mathrm{I}_{\mathrm{R}}$			at $600 \% \times \mathrm{I}_{\mathrm{R}}$			
5	$\mathrm{I}_{\text {sd }} \mathrm{X} \mathrm{I}_{\mathrm{R}}$		2.5		5	10			
	$\mathrm{t}_{\text {sd }}(\mathrm{s})$		0.1				0.2		
I	$\left.l_{i x}\right\|_{\text {R }}$		$14\left(\right.$ Max: $13 \times 1 \mathrm{I}^{(1)}$						
GF	$\mathrm{I}_{\mathrm{N} \times 1}$		0.2						
	$\mathrm{t}_{\mathrm{N}}(\mathrm{s})$		0.2						
NP	$\mathrm{I}_{\mathrm{N} X} \mathrm{l} \mathrm{R}$		1.0/0.5 ${ }^{(2)}$						
	$\mathrm{t}_{\mathrm{N}}(\mathrm{s})$		$\mathrm{t}_{\mathrm{N}}=\mathrm{t}_{\mathrm{R}}$						

Note

${ }^{11} I_{i} \mathrm{I}_{\text {max. }}=13 \mathrm{x} \mathrm{I}_{n}$
${ }^{(2)} 1.0 \times I_{R}$ or $0.5 \times I_{R}$ can be selected. Characteristic of neutral protection (t_{N} Vs. I_{n}) is identical to characteristic of phase protection (t_{R} vs. I_{R}).

MSXE 630

$I_{n}=630 \mathrm{~A}$

$\mathrm{I}_{\mathrm{R}}(\mathrm{A})$		xIn	0.4	0.5	0.63	0.8	0.85	0.9	0.95	1.0
Characteristics		No.	1	2	3	4	5	6		
	$t_{R}(\mathrm{~s})$		11	21	21	5	10	16		
L			at $200 \% \mathrm{xIR}$			at $600 \% \mathrm{x} \mathrm{I}_{\text {R }}$				
5	$\mathrm{I}_{\text {d }} \mathrm{X} \mathrm{l}_{\mathrm{R}}$		2.5		5	8				
5	$\mathrm{t}_{51}(\mathrm{~s})$		0.1				0.2			
1	$\mathrm{l}_{\mathrm{i}} \mathrm{X} \mathrm{l}_{\text {R }}$		14 (Max: $\left.10 \times \mathrm{I}_{\mathrm{n}}\right)^{(1)}$							
GF	$\mathrm{In}_{\mathrm{x}} \mathrm{I}_{n}$		0.2							
GF	$\mathrm{t}_{\mathrm{N}}(\mathrm{s})$		0.2							
NP	$\mathrm{I}_{\mathrm{N} \times 1 \mathrm{I}_{\mathrm{R}}}$		1.0/0.5 ${ }^{(2)}$							
	$\mathrm{t}_{\mathrm{N}}(\mathrm{s})$		$\mathrm{t}_{\mathrm{N}}=\mathrm{t}_{\mathrm{R}}$							

Note

${ }^{1(1)} I_{\text {i }}$ max. $=\left.10 \mathrm{x}\right|_{n}$
${ }^{(2)} 1.0 \times I_{R}$ or $0.5 \mathrm{x} \mathrm{I}_{\mathrm{R}}$ can be selected. Characteristic of neutral protection ($\mathrm{t}_{\mathrm{N}} \mathrm{vs} . \mathrm{I}_{\mathrm{n}}$) is identical to characteristic of phase protection ($\mathrm{t}_{\mathrm{R}} \mathrm{V}$. I_{R}).

MCCB WITH ELECTRONIC PROTECTION
MSXE 160 - MSXE 250 - MSXE 400 - MSXE 630 - MSXE 1000 - MSXE 1250 - MSXE 1600

MSXE 1000 (800A)

$I_{n}=800 \mathrm{~A}$

$\mathrm{I}_{\mathrm{R}}(\mathrm{A})$		x In	0.4	0.5	0.63	0.8	0.9	0.95	1.0
Characteristics		No.	1	2	3	4	5	6	7
L	$t_{R}(\mathrm{~s})$		11	21	21	5	10	19	29
			at $200 \% \times \mathrm{I}_{\mathrm{R}}$			at $600 \% \times \mathrm{l} \mathrm{I}_{\text {R }}$			
5			2.5		5	10			
	$\mathrm{t}_{\text {sd }}(\mathrm{s})$		0.1				0.2		
1	$\left.l_{i x}\right\|_{\text {R }}$		$14\left(\right.$ Max: $12 \times 1 \mathrm{I}^{(1)}$						
GF	$\mathrm{In}_{\mathrm{X}} \mathrm{In}_{n}$		0.2						
	$\mathrm{t}_{\mathrm{N}}(\mathrm{s})$		0.2						
NP	$\mathrm{IN}_{\mathrm{N}} \mathrm{I}_{\text {R }}$		1.0/0.5 ${ }^{(2)}$						
	$\mathrm{t}_{\mathrm{N}}(\mathrm{s})$		$\mathrm{t}_{\mathrm{N}}=\mathrm{t}_{\mathrm{R}}$						

Note

${ }^{(1)} I_{\text {i }}$ max. $=12 \times I_{n}$
${ }^{(2)} 1.0 \times I_{R}$ or $0.5 \times I_{R}$ can be selected. Characteristic of neutral protection (t_{N} vs. I_{n}) is identical to characteristic of phase protection (t_{R} vs. I_{R}).

MCCB WITH ELECTRONIC PROTECTION

MSXE 160 - MSXE 250 - MSXE 400 - MSXE 630 - MSXE 1000 - MSXE 1250 - MSXE 1600

MSXE 1000 (1000A)

$I_{n}=1000 \mathrm{~A}$

$\mathrm{I}_{\mathrm{R}}(\mathrm{A})$		x In	0.4	0.5	0.63		0.8		0.9	0.95	1.0
Characteristics		No.	1	2		3		4		5	6
L	$\mathrm{t}_{\mathrm{R}}(\mathrm{s})$		11	21		21		5		10	16
			at $200 \% \times \mathrm{l}$ R						at $600 \% \times \mathrm{l}$ R		
5	$\mathrm{I}_{\text {sd }} \times \mathrm{l}_{\text {R }}$		2.5		5				8		
	$\mathrm{t}_{\text {sd }}(\mathrm{s})$		0.1						0.2		
1	$\mathrm{l}_{\mathrm{i}} \mathrm{Xl}_{\mathrm{R}}$		$14\left(\text { Max: } 10 \times I_{n}\right)^{(1)}$								
GF	$\mathrm{IN}_{\mathrm{N}} \mathrm{In}_{n}$		0.2								
	$\mathrm{t}_{\mathrm{N}}(\mathrm{s})$		0.2								
NP	$\mathrm{INXV}_{\mathrm{x}}$		1.0/0.5 ${ }^{(2)}$								
	$\mathrm{t}_{\mathrm{N}}(\mathrm{s})$		$\mathrm{t}_{\mathrm{N}}=\mathrm{t}_{\mathrm{R}}$								

Note

${ }^{1(1)} I_{\text {i }}$ max. $=\left.10 \mathrm{x}\right|_{n}$
${ }^{(2)} 1.0 \times I_{R}$ or $0.5 \mathrm{x} \mathrm{I}_{\mathrm{R}}$ can be selected. Characteristic of neutral protection ($\mathrm{t}_{\mathrm{N}} \mathrm{vs} . \mathrm{I}_{\mathrm{n}}$) is identical to characteristic of phase protection ($\mathrm{t}_{\mathrm{R}} \mathrm{V}$. I_{R}).

MCCB WITH ELECTRONIC PROTECTION
MSXE 160 - MSXE 250 - MSXE 400 - MSXE 630 - MSXE 1000 - MSXE 1250 - MSXE 1600

$I_{n}=1250 \mathrm{~A}$

Note

$\left.{ }^{(1)}\right)_{\text {I }}$ max. $=12 \times \mathrm{I}_{\mathrm{n}}$
${ }^{(2)} 1.0 \mathrm{X} \mathrm{I}_{\mathrm{R}}$ or $0.5 \times \mathrm{I}_{\mathrm{R}}$ can be selected. Characteristic of neutral protection $\left(\mathrm{t}_{\mathrm{N}} \mathrm{V}\right.$. $\left.\mathrm{I}_{\mathrm{n}}\right)$ is identical to characteristic of phase protection $\left(\mathrm{I}_{\mathrm{R}} \mathrm{VS} . \mathrm{I}_{\mathrm{R}}\right)$.

MCCB WITH ELECTRONIC PROTECTION

MSXE 160 - MSXE 250 - MSXE 400 - MSXE 630 - MSXE 1000 - MSXE 1250 - MSXE 1600
MSXE 1600

$I_{n}=1600 \mathrm{~A}$

$\mathrm{I}_{\mathrm{R}}(\mathrm{A})$		$x \mathrm{ln}$	0.4	0.5	0.63	0.8	0.9	0.95	1.0
Characteristics		No.	1	2	3	4	5	6	7
L	$\mathrm{t}_{\mathrm{R}}(\mathrm{s})$		11	21	21	5	10	19	29
			at $200 \% \times \mathrm{I}_{\mathrm{R}}$			at $600 \% \times \mathrm{I}_{\text {R }}$			
5	$\mathrm{I}_{\text {sd }} \times \mathrm{X}_{\mathrm{R}}$		2.5		5	10			
	$\mathrm{t}_{\text {sd }}(\mathrm{s})$		0.1				0.2		
1	$\mathrm{l}_{\mathrm{i}} \mathrm{X} \mathrm{l}_{\text {R }}$		14 (Max: $\left.12 \times 1 I^{\prime}\right)^{(1)}$						
GF	$\mathrm{IN}_{\mathrm{N}} \mathrm{I}_{\mathrm{n}}$		0.2						
	$\mathrm{t}_{\mathrm{N}}(\mathrm{s})$		0.2						
NP	$\mathrm{I}_{\mathrm{N}} \mathrm{II}_{\mathrm{R}}$		1.0/0.5 ${ }^{(2)}$						
	$\mathrm{t}_{\mathrm{N}}(\mathrm{s})$		$\mathrm{t}_{\mathrm{N}}=\mathrm{t}_{\mathrm{R}}$						

Note

${ }^{(1)} I_{i} \max =12 \times I_{n}$
${ }^{(2)} 1.0 \times I_{R}$ or $0.5 \times I_{R}$ can be selected. Characteristic of neutral protection $\left(t_{N} v s . I_{n}\right)$ is identical to characteristic of phase protection (t_{R} vs. $\left.I_{R}\right)$.

MCCB WITH ELECTRONIC PROTECTION

MSXE 160 - MSXE 250 - MSXE 400 - MSXE 630 - MSXE 1000 - MSXE 1250 - MSXE 1600

Peak Current Characteristics

MSXE 400 at 400/415/440V AC

MSXE 160, MSXE 250 at 690V AC

Prospective short circuit current in RMS sym. (kA)

MSXE 400 at 690V AC

MCCB WITH ELECTRONIC PROTECTION

MSXE 160 - MSXE 250 - MSXE 400 - MSXE 630 - MSXE 1000 - MSXE 1250 - MSXE 1600

MSXE 1000 (800A) at 400/415/440V AC

Prospective short circuit current in RMS sym. (kA)

MSXE 630 at 690V AC

Prospective short circuit current in RMS sym. (kA)

MSX 1000 (800A) at 690V AC

Prospective short circuit current in RMS sym. (kA)

MCCB WITH ELECTRONIC PROTECTION
MSXE 160 - MSXE 250 - MSXE 400 - MSXE 630 - MSXE 1000 - MSXE 1250 - MSXE 1600

MSXE 1000 (1000A) at 690V AC

Prospective short circuit current in RMS sym. (kA)

MSX 1250 at 690V AC

Prospective short circuit current in RMS sym. (kA)

MCCB WITH ELECTRONIC PROTECTION

MSXE 160 - MSXE 250 - MSXE 400 - MSXE 630 - MSXE 1000 - MSXE 1250 - MSXE 1600

MSXE 1600 at 690V AC

Prospective short circuit current in RMS sym. (kA)

Specific Let-Through Energy Characteristics

MCCB WITH ELECTRONIC PROTECTION
MSXE 160 - MSXE 250 - MSXE 400 - MSXE 630 - MSXE 1000 - MSXE 1250 - MSXE 1600

MSXE 400 a 690V AC

Prospective short-circuit current in RMS sym. (kA)

Prospective short-circuit current in RMS sym. (kA)

MCCB WITH ELECTRONIC PROTECTION

MSXE 160 - MSXE 250 - MSXE 400 - MSXE 630 - MSXE 1000 - MSXE 1250 - MSXE 1600

MSXE 1000 (1000A) at 400/415/440V AC

Prospective short-circuit current in RMS sym. (kA)

MSXE 1000 (800A) at 690V AC

Prospective short-circuit current in RMS sym. (kA)

MSXE 1000 (1000A) at 690V AC

Prospective short-circuit current in RMS sym. (kA)

MCCB WITH ELECTRONIC PROTECTION
MSXE 160 - MSXE 250 - MSXE 400 - MSXE 630 - MSXE 1000 - MSXE 1250 - MSXE 1600

MSXE 1250 at 690V AC

MSXE 1600 at 690V AC

Prospective short-circuit current in RMS sym. (kA)

MCCB WITH RESIDUAL CURRENT PROTECTION msхD 125 - мsхD 160 - msхD 250

MSXD circuit breakers with residual current protection have the same dimensions, the same points for mounting and the same overload/short-circuit performances of equivalent frames MSX MCCBs.

MSXD range is available in two frame sizes with interrupting capacities of 25 kA and 36 kA ; the first size in available with rated current from 20A to 125A, the second size is available with rated current from 160A to 250A. Every size is offered with adjustable thermal and fixed magnetic protection characteristics.

MCCB WITH RESIDUAL CURRENT PROTECTION msхD 125 - msхD 160 - msхD 250

ADJUSTMENT DIALS

$I \Delta_{n}(A)$ is the adjustable tripping threshold for residual current (earth leakage) protection.
It can be set between 30 mA and 3 A .
Available settings are shown below:
$\Delta_{\mathrm{t}}(\mathrm{ms})$ is a time delay which is introduced to the residual current (earth leakage) protection characteristic. Available settings are shown below. It can also be set to 0 (max. actual tripping time is 40ms) or NT (No Trip - tripping time $=\infty$). The maximum breaking time at each setting is shown in brackets.
Note that if $/ \Delta_{\mathrm{t}}$ is set at $30 \mathrm{~mA}, \Delta_{\mathrm{t}}$ defaults to 0 .

$/_{\mathrm{R}}(\mathrm{A})$ is the adjustable tripping threshold for overload protection. It can be set between 0.63 and 1.0 times /n. Available /n ratings are shown below:
$/_{i}$ is the tripping threshold for short-circuit protection.
It is fixed at the values shown below:

Models, ratings and settings

Model	Breaking capacity	$l \Delta n(A)$	$\Delta t(m s)$	Rated current I_{n} (A)	Magnetic trip current $\mathrm{I}_{\mathrm{i}}(\mathrm{A})$
MSXD 125	25 kA	$0.03,0.1,0.3,0.5,1,3$	0 (40), 60 (195), 200 (365), 400 (620), 700 (950), NT ∞	20,32,50,63, 100	$12 \times \mathrm{ln}$
				125	$10 \times \mathrm{ln}$
	36 kA	$0.03,0.1,0.3,0.5,1,3$	0 (40), 60 (195), 200 (365), 400 (620), 700 (950), NT ∞	20, 32, 50, 63, 100	$12 \times \mathrm{ln}$
				125	$10 \times \mathrm{ln}$
$\begin{aligned} & \text { MSXD } 160 \\ & \text { MSXD } 250 \end{aligned}$	25 kA	$0.03,0.1,0.3,0.5,1,3$	0 (40), 60 (195), 200 (365), 400 (620), 700 (950), NT ∞	160	$13 \times \mathrm{ln}$
				250	$10 \times \mathrm{ln}$
	36 kA	$0.03,0.1,0.3,0.5,1,3$	0 (40), 60 (195), 200 (365), 400 (620), 700 (950), NT ∞	160	$13 \times \mathrm{ln}$
				250	$10 \times \mathrm{ln}$

MCCB WITH RESIDUAL CURRENT PROTECTION msхд 125 - м $5 \times \mathrm{X} 160$ - мsхо 250

Time/Current Characteristics

MSXD 160

MSXD 125

MSXD 250

MCCB WITH RESIDUAL CURRENT PROTECTION msхD 125 - msхд 160 - msхD 250

Peak Current Characteristics

Specific Let-Through Energy Characteristics

MSXD 160, MSXD 250 at 400/415/440V AC

Prospective short circuit current in RMS sym. (kA)

MSXD 160, MSXD 250 at 400/415/440V AC

Prospective short-circuit current in RMS sym. (kA)

COMPACT MCCB WITH THERMAL-MAGNETIC PROTECTION

AND COMPACT SWITCH-DISCONNECTORS
MSX/M 160c - MSX/M 250c

SIGNALING AND CONTROL (INTERNAL ACCESSORIES)

Electrical control accessories for MSX 160c and MSX 250c range are designed with the installer in mind.
Auxiliary contacts of open/closed position, fault indicator switch, shunt trip and undervoltage releases are of modular design and convenient to use.

Undervoltage release UV

Shunt trip release SH

Auxiliary contact of open/closed position AX

Auxiliary contact of fault indicator switch AL

Valid/Maximum Accessory Combinations MSX/M 160c MSX/M 250c

] Auxiliary contact of open/closed position (AX)

- Auxiliary contact of fault indicator switch (AL)
\square Shunt trip release (SH)
Undervoltage release (UV)

COMPACT MCCB WITH THERMAL-MAGNETIC PROTECTION
AND COMPACT SWITCH-DISCONNECTORS
MSX/M 160c - MSX/M 250c

SIGNALING AND CONTROL (INTERNAL ACCESSORIES)

Rated values of auxiliary contact of open/closed postion (AX) and fault indicator switch (AL)

Type of breaker	Rated value of voltage and current of auxiliary contacts						
	AC			DC			Minimum load
	Voltage(V)	Current (A)		Voltage (V)	Current (A)		
		Resistive load	Inductive load (1)		Resistive load	Inductive load (1)	
MSX/M 160c MSX/M 250c	480	-	-	250	-	-	15V c.c. 100 mA
	250	3	2	125	0,5	0,05	
	125	3	2	30	3	2	

NOTE:
(1) The inductive load means power factor of no smaller than 0.4 and time constant of no larger than 7 ms .

Operation of auxiliary contacts

Switch	Breaker status	[ON]	[OFF]	[TRIP]
Auxiliary contact of open/closed position AX	$\underbrace{12 / A x_{b}}_{91 / A x_{c}}$	11/AXc-14/AXa "Closed" 11/AXc-12/AXb "Open"	11/AXc-14/AXa "Open" 11/AXc-12/AXb "Closed"	11/AXc-14/AXa "Open" 11/AXc-12/AXb "Closed"
Auxiliary contact of fault indicator switch AL		91/ALc-94/ALa "Open" 91/ALc-92/ALb "Closed"	91/ALc-94/ALa "Open" 91/ALc-92/ALb "Closed"	91/ALc-94/ALa "Closed" 91/ALc-92/ALb "Open"

Rated values of shunt trip releases

Type of breaker	Peak exciting current, A		
	AC voltage (V)		
	$\mathbf{2 0 0 - 2 4 0}$	$\mathbf{3 8 0 - 4 5 0}$	DC voltage (V)
MSX/M 250c	0.014	0.0065	$\mathbf{2 4}$

NOTE:
The permissible voltage range is from 85% to 110% of the rated voltage for AC or 75% to 125% thereof for DC .
Ensure that the voltage does not drop or exceed the permissible voltage range when SHT is actuated.
Breaker contacts usually start opening within 30 ms after the rated voltage is applied to the breaker.
Rated values of undervoltage releases (instantaneous type)

Type of breaker	Power supply capacity, VA		Exciting current, $\mathbf{~ M A ~}$
	AC voltage (V)		DC voltage (V)
	$\mathbf{2 0 0 - 2 4 0}$	$\mathbf{3 8 0 - 4 5 0}$	$\mathbf{2 4}$
MSX/M 160c	1.5	2.3	23
MSX/M 250c			

Rated values of undervoltage releases with time delay

Time delays: $500 \pm 300 \mathrm{msec}$.

Type of breaker	Power supply capacity, VA	Exciting current, mA
	AC voltage (V)	DC voltage (V)
	$\mathbf{2 0 0 - 2 4 0}$	$\mathbf{2 4}$
MSX/M 160c	2.5	22
MSX/M 250c		2

NOTE: UV releases are installed on the right hand side of the breaker.

For technical information contact the Technical Assistance Service or visit gewiss.com

COMPACT MCCB WITH THERMAL-MAGNETIC PROTECTION

AND COMPACT SWITCH-DISCONNECTORS
MSX/M 160c - MSX/M 250c

MOTOR OPERATOR

Features	
Installation and Removal Ease	Simply rotate two knobs allows the motor operator to be installed on or removed from the breaker.
HIgh-speed, Stable Actuation	The quick operating time makes it possible to use the motor operators
for synchronized closing of breakers.	
Silent Operation	Motor operator uses a direct drive system, providing operational silence.
"Lock-in Off" Capability	This capability allows the breaker to be padlocked in the OFF state.

Notes:

(1) Permissible operating range is 85 to 110%.
(2) The currents shown are the maximum values at the maximum rated operational voltage.
(3) The operating time is the value when the rated operational voltage is supplied.

Allow a longer time for the motor operator to complete the operation.
(4) The motor operator is of a short time duty. Do not subject it to more than 10 continuous ON-OFF operations. If this occurs, allow the motor operator to cool for at least 15 minutes.
(5) When the rated operational voltage is DC24V the open voltage will be DC22V.

COMPACT MCCB WITH THERMAL-MAGNETIC PROTECTION
 AND COMPACT SWITCH-DISCONNECTORS

MSX/M 160c - MSX/M 250c

MOTOR OPERATOR

Electrical Control Using Motorised Operation

Motorized Operation

The motor operator has an input-signal self-hold circuit: closing the ON or OFF switch (see circuit diagrams shown below) momentarily allows activating the motor operator. To reset the tripped breaker to the OFF position, close the OFF (RESET) switch.
The voltage presence LED indication is on when the power is supplied to the motor operator.

Manual Operation

Pull the operating handle out. Rotating the handle counter clockwise turns ON the breaker and clockwise turns OFF or resets the breaker.

Operation Precaution

1. Ensure that the actual operation voltage ranges from 85% to 110% of the rated one.
2. Use operation switches whose ratings and power capacity is as specified in the "Ratings and Specifications" table on the previous page.
3. Use noise filters if the control power supply of the motor operator is shared by peripheral devices. Otherwise, power supply noise may cause malfunction of the peripheral devices.

Control Circuit Diagrams of Motor Operators

COMPACT MCCB WITH THERMAL-MAGNETIC PROTECTION

AND COMPACT SWITCH-DISCONNECTORS
MSX/M 160c - MSX/M 250c

ROTARY HANDLES AND LOCKING DEVICES

Direct rotary handle for MSX/M 160c and MSX/M 250c

This external operating handle is used to operate a circuit breaker mounted just behind a compartment door with the door closed. The operating mechanism and handle are mounted directly onto the circuit breaker. The handle protrudes through a cut-out in the door. A mould flange is supplied with the handle, covering panel cut-out from the front.

Breaker Mounting Direction

The ON and OFF positions of the handle and the positions of drilled holes in the panel do not need to be changed depending on the breaker mounting direction. The upper supply type is standard.
Right power supply type

Panel Lock Mechanism

This external operating handle keeps the panel door locked when in the 'ON' position.
The handle is turned to the 'RESET/OPEN COVER' position to open the panel door.
The release knob enables the panel door to be opened with the handle in the 'ON' position. To release: turn the release knob in the direction of anti-clockwise with a flat-bladed screwdriver.

Safety interlock (Standard)

The safety interlock prevents the breaker from turning ON as long as the panel is open.
This interlock can be released using the hook lever.

Handle Lock Mechanism

This Mechanism allows the breaker to be padlock in the OFF position.
Padlocks are not supplied.
Up to three padlocks can be installed.

Padlock dimensions (mm)

| A | Diameter |
| :---: | :---: | :---: |
| 13 min | $\emptyset 5.5-8$ |
| $?$ | |

COMPACT MCCB WITH THERMAL-MAGNETIC PROTECTION
 AND COMPACT SWITCH-DISCONNECTORS

MSX/M 160c - MSX/M 250c

ROTARY HANDLES AND LOCKING DEVICES

Extended rotary handle for MSX/M 160c and MSX/M 250c

The door mounted operating handle allows breakers installed in control centers or switchboards to be manually operated from outside and complies with IEC 6020-1.
It consists of an operating mechanism that is mounted on the breaker, a handle that is mounted on the door and a shaft that transmits the turning force from the handle to the operating unit.
The shaft support acts as a guide when the panel door is being closed.

Handle cover

Shaft support

Square shaft

Operating unit

Operating handle

Breaker Mounting Direction

The ON and OFF positions of the handle and the positions of drilled holes in the panel do not need to be changed depending on the breaker mounting direction.

Operating Direction of Handles

Rotate the operating handle clockwise to turn the breaker on.

Rotate clockwise to turn the breaker ON

[^0]
COMPACT MCCB WITH THERMAL-MAGNETIC PROTECTION
 AND COMPACT SWITCH-DISCONNECTORS

MSX/M 160c - MSX/M 250c

ROTARY HANDLES AND LOCKING DEVICES

Panel Lock Mechanism

The external operating handle keeps the panel door locked when in the 'ON' position.
The handle is turned to the OFF position to open the panel door.
The release button enables the panel door to be opened with the handle in the "ON' position. To release: push the release button on the side of the operating handle with a flat-bladed screwdriver.

Toggle Lock Mechanism

This Mechanism allows the breaker to be padlock in the OFF position.
Padlocks are not supplied.
Up to three padlocks can be installed.

Type 160A Frame

Type 250A Frame

Type 160A Frame

Locking Devices

Toggle locking devices allow MCCB's to be locked ON or OFF using up to three padlocks. Locking devices for 160A and 250A frame models accept padlocks with a 5 mm hasp diameter.

COMPACT MCCB WITH THERMAL-MAGNETIC PROTECTION AND COMPACT SWITCH-DISCONNECTORS

MSX/M 160c - MSX/M 250c

INSULATION ACCESSORIES

Terminal Covers for Front Connection

Terminal covers for front connection are suitable for covering the exposed live parts of conductors terminated on the MCCB.

Terminal Cover for Front Connection

Terminal covers for Rear Connection

Terminal covers for rear connection are available for 160A to 250A frame models and may be used on MCCBs fitted with rear connections (RC). They prevent access to the terminals from the front and top.

Terminal cover lock option is available to lock and seal front and rear terminal covers on to MCCB.

COMPACT MCCB WITH THERMAL-MAGNETIC PROTECTION
 AND COMPACT SWITCH-DISCONNECTORS

MSX/M 160c - MSX/M 250c

INSULATION ACCESSORIES

Interpole Barriers

Interpole barriers provide maximum insulation between phases at the terminals of the MCCB. They cannot be fitted at the same time as any of the terminal covers. Interpole barriers for use on one end of the MCCB are supplied as standard.
Additional interpole barriers can be ordered individually. All interpole barriers can easily be fitted to either end of an MCCB.

MCCB fitted with Interpole Barriers at both ends

MCCB WITH THERMAL-MAGNETIC, ELECTRONIC, RESIDUAL CURRENT PROTECTION AND SWITCH-DISCONNECTORS
MSX - MSXD - MSXE - MSXM

SIGNALING AND CONTROL (INTERNAL ACCESSORIES)

Electrical control accessories for MSX range are designed with the installer in mind.
Auxiliary contacts of open/closed position, fault indicator switch, shunt trip and undervoltage releases are of modular design and convenient to use.

1 Auxiliary contact of open/closed position (AX)
2 Auxiliary contact of fault indicator switch (AL)
3 Shunt trip release (SH)
4 Undervoltage release (UV)

- All auxiliary contacts are common up to 1600 A .

Shunt trip releases are split between two sizes: 125:1000A and 1250 $\div 1600 \mathrm{~A}$.
Undervoltage releases are split between two sizes: 125 $\div 630 \mathrm{~A}$ and $800 \div 1600 \mathrm{~A}$.

- All accessories are endurance tested to the same level as MCCBs.
- Internal accessories are easily field-installable.
- All accessories are individually packaged and are supplied with fitting instructions.
- Control wiring is terminated on the accessory screw terminal.

Operations for the installation of internal accessories

(1)

Easy field-Installation of Accessories

- Internal accessory can be simply plugged into position.
- No tools are required for this, except a screwdriver to lift the MCCB front cover clips.
- Accessories fit with a firm click when installed correctly.
- Colour coding of accessories helps identification and installation.

MCCB WITH THERMAL-MAGNETIC, ELECTRONIC, RESIDUAL CURRENT PROTECTION

 AND SWITCH-DISCONNECTORSMSX - MSXD - MSXE - MSXM

SIGNALING AND CONTROL (INTERNAL ACCESSORIES)

Valid Maximum Accessory Combinations

Auxiliary contact of open/closed position (AX)

- Auxiliary contact of fault indicator switch (AL)
\square Shunt trip release (SH)
Undervoltage release (UV)

NOTE

- It is not possible to install a shunt trip and an undervoltage release in an MCCB as they occupy the same location. Undervoltage release can provide remote tripping if necessary by wiring a normally closed contact or pushbutton in series with the protected supply.
- Undervoltage releases with time delays require an external time delay controller which clips to the side of the MCCB.
* Shunt trip and undervoltage releases cannot be installed in this model.

MCCB WITH THERMAL-MAGNETIC, ELECTRONIC, RESIDUAL CURRENT PROTECTION AND SWITCH-DISCONNECTORS
MSX - MSXD - MSXE - MSXM

SIGNALING AND CONTROL (INTERNAL ACCESSORIES)

Auxiliary contacts

Auxiliary contact of open/closed position (AX)

Auxiliary contact of open/closed position indicates the ON or OFF status of circuit breaker when manually open or tripped by means a changeover switch with 3 terminals.

Auxiliary contacts of open/closed position are colour coded grey.
The cable capacity of the terminals is 0.5 to $1.25 \mathrm{~mm}^{2}$, bare cable.
Auxiliary contact of open/closed position meets the requirements of IEC 61058-1.

Auxiliary contact of fault indicator switch (AL)

Auxiliary contact of fault indicator switch indicates the TRIP status of circuit breaker by means a changeover switch with 3 terminals.

Auxiliary contacts of fault indicator switch are colour coded grey and black.
The cable capacity of the terminals is 0.5 to $1.25 \mathrm{~mm}^{2}$, bare cable.
Auxiliary contact of fault indicator switch meets the requirements

Terminal Designations of IEC 61058-1.

Rated value of voltage and current of auxiliary contacts						
Voltage (V)	AC		Voltage (V)	DC		Minimum Load
	Current (A)			Current (A)		
	Resistive Load	Inductive Load		Resistive Load	Inductive Load	
440	-	-	250	-	-	
240	3	2	125	0.4	0.05	100 mA at 15V
110	3	2	30	3	2	

MCCB WITH THERMAL-MAGNETIC, ELECTRONIC, RESIDUAL CURRENT PROTECTION AND SWITCH-DISCONNECTORS

MSX - MSXD - MSXE - MSXM

SIGNALING AND CONTROL (INTERNAL ACCESSORIES)

Opening releases

Shunt trip release (SH)

Shunt trip release allows a circuit breaker to be tripped remotely on the application of the rated coil voltage across the shunt trip release terminals. Shunt trip releases have continuously rated coils and are suitable for use in electrical interlocking applications. The MCCB contacts and toggle will move to the tripped position when the shunt trip is operated.
The permissible voltage range is 85% to 110% for AC or 75% to 125% for DC .
The cable capacity of the terminals is 0.5 to $1.25 \mathrm{~mm}^{2}$, bare cable.

Terminal Designations

Shunt trip releases are colour coded grey.

Rated values			
Rated	Voltage AC		Voltage DC
Voltage (V)	200-240	380-450	24
Excitation Current (A)	0.014	0.0065	0.03

Undervoltage release (UV)
Undervoltage release will trip the circuit breaker automatically when the voltage applied to the terminals of the undervoltage coil drops to between 70% and 35% of its voltage rating. The undervoltage release prevents the circuit breaker being closed unless a voltage corresponding to at least 85% of its voltage rating is applied across the terminals of the undervoltage coil.
The MCCB contacts and toggle will move to the tripped position when the under-voltage trip operates. Undervoltage releases with AC operating voltages are available with 500 ms time delays. Time-delay units are fitted to the
 outside of MCCBs.
The cable capacity of the terminals is 0.5 to $1.25 \mathrm{~mm}^{2}$, bare cable.
Undervoltage releases are colour coded grey and black.

Rated values			
	Power supply capacity (VA)		Excitation current (mA)
MCCB Model	Voltage AC		Voltage DC
	200-240	380-450	24
$\begin{aligned} & \text { MSX } 125 \\ & \text { MSX/E } 160 \end{aligned}$			
$\begin{aligned} & \text { MSX/E } 250 \\ & \text { MSX/E/M } 400 \\ & \text { MSXE/M } 630 \end{aligned}$	2.8	2.3	23
	Voltage AC		Voltage DC
M	200-240	380-415	24
MSXE/M 1000 MSXE/M 1250 MSXE/M 1600	2.9	2.1	29

MCCB WITH THERMAL-MAGNETIC, ELECTRONIC, RESIDUAL CURRENT PROTECTION AND SWITCH-DISCONNECTORS
MSX - MSXD - MSXE - MSXM

TERMINAL BLOCK (FOR INTERNAL ACCESSORIES)

Terminal Block for Plug-in MCCBs

The terminal block for a plug-in MCCB consists of:

- a male section pre-fitted with 3 cables with which clips easily to the back of the MCCB
- a female section with 3 user terminals which clips easily into the plug-in base.

Up to 4 terminal blocks can be installed on a 125A, 160A or 250A frame MCCB. Up to 5 terminal blocks can be installed on a 400A to 800A frame MCCB.

Terminal Block for Plug-in MCCBs

MCCB WITH THERMAL-MAGNETIC, ELECTRONIC, RESIDUAL CURRENT PROTECTION AND SWITCH-DISCONNECTORS

MSX - MSXD - MSXE - MSXM

MOTOR OPERATOR

Motor operators for MCCBs up 1000A

Motor operators provide the possibility of opening and closing an MCCB on application of electrical control signals.
Motor operators are extremely reliable, having been designed to endure the same switching duty as the host MCCB.

- Easy field-installation.
- Fast operation (100 ms).
- Positive contact indication.
- Padlocking facility as standard (Maximum 3, hasp diameter 8mm).
- Versions available with automatic reset function.
- Voltage presence indication.

Motor operators for 125A and 250A frame are mounted on the front of the breaker. They can be rapidly fitted by locating the round pegs and square pegs on the motor into corresponding round and square holes on the breaker. It takes less than 10 seconds to secure the motor to the MCCB. Two levers securely lock the motor into position. No tools are needed to fit the motor operator.
400A frame to 1000A frame motor operators are held in place with mounting screws. They can be installed easily in the field.

MCCB WITH THERMAL-MAGNETIC, ELECTRONIC, RESIDUAL CURRENT PROTECTION AND SWITCH-DISCONNECTORS
MSX - MSXD - MSXE - MSXM

MOTOR OPERATOR

Indication of ON, OFF or TRIPPED Status

The handle of 125A and 250A frame motor operators has dual functions:

1. Indication of ON, OFF or TRIPPED status as shown in the photographs below;
2. Manual operation when handle is pulled out. The supply to electrical control circuits inside the motor operator is cut when the handle is pulled out.

MCCB on

Motor operators from 400 A to 1000 A frame MCCBs incorporate a mechanical flag which indicates the ON, OFF and TRIPPED status of the MCCB. They can be manually charged using the lever provided.

Ratings and Specifications

MCCB frame		125A	160A-250A	400A-630A	800A-1000A
MCCB model		MSX/D 125	MSX/E/D 160	MSX/E 400	MSXE 1000
		-	MSX/E/D 250	MSXE 630	-
Operating current/ Starting current Peak value (A)	100-110 V AC	-		ON ---/2.3 OFF, RESET 1.4/3.7	ON ---/2.2 OFF, RESET 1.7/3.5
	200-220 V AC	3.5/7		ON ---/2.3 OFF, RESET 1.1/3.5	ON ---/2.2 OFF, RESET 1.3/3.5
	230-240 V AC	18/26		ON ---/7.2 OFF, RESET 3.9/8.1	ON ---/12 OFF, RESET 6.0/11.5
	24V DC	-		ON ---/7.2 OFF/RESET 2.0/5.1	ON ---/7 OFF, RESET 3.2/6.5
Operating method		Direct drive		Spring charging	Spring charging
Operating time (s)	ON	0.1		0.1	0.1
	OFF	0.1		1.5	1.5
	RESET	0.1		1.5	1.5
Operating switch rating		$\begin{array}{r} 100 \mathrm{~V}, 0.1 \mathrm{~A}, \\ 44 \mathrm{~V}, \mathrm{c} \end{array}$	ning voltage nt 4 mA	$100 \mathrm{~V}, 0.1 \mathrm{~A}$, Opening voltage 48 V , current 1 mA	
Power supply required		300VA	nimum	300VA minimum	300VA minimum
Dielectric properties (1 min)		1500 V AC (1000V AC for 24V DC and 48V DC motors)			
Weight		1.4 kg		3.5 kg	3.5 kg

Note: Operating times shown in the above table apply only when the rated operational voltage is supplied to the motor operator.
The voltage supplied to the motor operator must be within the range of 85% and 110% of the rated operating voltage.

MCCB WITH THERMAL-MAGNETIC, ELECTRONIC, RESIDUAL CURRENT PROTECTION AND SWITCH-DISCONNECTORS

MOTOR OPERATOR

Motor Operator Control Circuits

The motor operator incorporates a self-hold circuit for the closing and opening signals. Therefore a momentary (over 50 msec .) open or close signal will ensure a complete operation. When the breaker trips, the breaker is reset by applying a signal to the OFF terminals of the motor.
When an undervoltage release UV is used with a motor operator, design the control circuit so that the undervoltage release UV is energised before a reset or close signal is sent to the motor operator. A 40 ms time delay in the reset and close signals is sufficient to allow the undervoltage release UV to energise. When a shunt trip release is used with a motor operator, design the control circuit so that the shunt trip release is de-energised before a reset or close signal is sent to the motor operator.
When a mechanical interlock is used with motor operators, design the control circuit to provide electrical interlocking between the motor operators. The electrical interlocking should prevent a close signal being sent to a motor operator unless the other motor operator and circuit breaker are in the OFF position.

MCCB WITH THERMAL-MAGNETIC, ELECTRONIC, RESIDUAL CURRENT PROTECTION AND SWITCH-DISCONNECTORS

MSX - MSXD - MSXE - MSXM

MOTOR OPERATOR

Motor operators for MCCBs 1250A and 1600A

The breaker can be padlocked in the "OFF" position by pulling out the lock plate, and locking it with a padlock. When the breaker is "ON", the lock plate cannot be pulled out. Up to three lock can be used. Padlock not supplied.

Positive Contact Indication

- Colour coding indicates the true position of the contacts clearly: ON (red), OFF (green), TRIP (white).

Easy Maintenance

- Breaker mounting, removal, and even setting changes can be done without removing the motor operator.

Manual ON/OFF Operation with One Stroke
Fast Closing Operation

- Closing in 60 ms or less.

The closing time remains constant over repeated operations.

Ratings and Specifications

MCCB frame			1250A-1600A
MCCB model			MSXE/M 1250
			MSXE/M 1600
Lock in "OFF" position (standard)			\square
Manual Trip Button			\square
Operating current/ Inrush current (A)	230-240V c.a.	ON (1)	-/1.2
		OFF, RESET (1)	1.0/3.2
	24V c.c.	ON	-/4.5
		OFF, RESET	4.0/12.0
Type of operation			Spring Charged
Operating Time(s)	ON (Maximum values)		0.06
	OFF, RESET ${ }^{(2)}$		3
Control Switch Ratings			250V, 5A
Power Source Capacity (VA)			300VA
Dielectric withstand voltage The value in brackets for 24V DC			AC1500V (AC500V)
Weight (kg)			6.4

NOTE

(1) Maximum values at $\mathrm{AC} 230 \mathrm{~V}, 50 \mathrm{~Hz}$
(2) Maximum values at the rated operating voltages

MCCB WITH THERMAL-MAGNETIC, ELECTRONIC, RESIDUAL CURRENT PROTECTION AND SWITCH-DISCONNECTORS

MSX - MSXD - MSXE - MSXM

MOTOR OPERATOR

Motorised Operation

ON CONTROL

When the ON switch is closed, the latch release coil (LRC) is excited and the closing spring is released. The breaker quickly closes and goes into ON status.
When the closing spring is released, the limit switch (LS) is opened and the LRC is de-excited.

OFF CONTROL

When the off switch is closed, self-hold control relay (Y) is activated and motor (M) operates to charge the closing spring.
The breaker changes to OFF status.

RESET CONTROL

When the breaker is in TRIP status, closing the OFF switch activates self-hold control relay (Y) and starts motor (M). Motor (M) charges the closing spring and resets the breaker.

Manual Operation

ON, OFF (RESET)

The breaker can be opened (OFF or reset) and closed (ON) alternately by pulling theoperating lever down in one fullstroke. ON/OFF operation ofthe breaker is possible withoutcharging or releasing theclosing spring.

EMERCENCY TRIP

Opening the breaker (OFF) using the motor operator takes up to 3 seconds. If a remote emergency off function is necessary, incorporate the shunt trip device (SHT) or the undervoltage trip device (UVT) into the breaker.

PRECAUTIONS RECARDING USAGE

- If using the UVT option, be sure to reset the UVT before closing the breaker.
- The motor operator must be supplied with voltage within the following range:

DC: 75-110\% of rated voltage
AC: 85-100\% of rated voltage
Operation at low voltage may burn out the motor.

Anti-pumping Function

When the breaker is turned ON and the closing spring is released, self-hold control relay X is active. Xa -contact is held closed, and Xb -contact is opened. While the ON switch is closed, latch release coil (LRC) will not be excited even if the OFF switch is closed or an automatic reset circuit is being used. Pumping is thus prevented.

Automatic Charge/discharge Function

If the breaker is closed manually (ON) while the power source is on, the handle switch (HS) induces automatic release of the closing spring. Likewise, if the breaker is opened manually (OFF), the springs are automatically charged. If the breaker is opened or closed while the power source is off, later when the power source is turned on, the closing spring will automatically be charged or discharged to match the ON/OFF status of the breaker.
This automatic charge/discharge function is necessary to prepare the closing mechanism for the next ON/OFF operation.
The sound of the charging or discharging of the spring should not be mistaken for a malfunction.

MCCB WITH THERMAL-MAGNETIC, ELECTRONIC, RESIDUAL CURRENT PROTECTION AND SWITCH-DISCONNECTORS
MSX - MSXD - MSXE - MSXM

ROTARY HANDLES AND LOCKING DEVICES

Direct and extended rotary handles are extremely reliable, having been designed to endure the same switching duty as the host MCCB.

Safety Features

- Door interlock mechanism with override facility included as standard
- Degree of protection: IP55
- Locks OFF with up to 3 padlocks (8mm hasps)
- Available in red for extended rotary handles
- A trip can be performed with the external operating handle fitted to the MCCB

Orientation

To switch the breaker from OFF to ON the external operating handle is rotated through 90 degrees in a clockwise direction.
The ON (I) and OFF (0) indication of the external operating handle can be re-oriented in steps of 90 degrees with respect to the operating mechanism.
This allows the indication position to remain the same whether the breaker is mounted vertically (right side up or upside down) or horizontally (on its left side or on its right side). The hole cut-out dimensions for a panel or door will remain unchanged if the external operating handle is re-oriented. The external operating handle's axis of rotation is on the intersection of the centre lines of a 3 P MCCB.
This means that the positioning of the door cutouts is symmetrical for breakers mounted horizontally on either side of a vertical busbar system.

MCCB ON

MCCB ON

MCCB WITH THERMAL-MAGNETIC, ELECTRONIC, RESIDUAL CURRENT PROTECTION AND SWITCH-DISCONNECTORS

MEX - MSXD - MSXE - MSXM

ROTARY HANDLES AND LOCKING DEVICES

Extended rotary handle

The door mounted handles allow breakers installed in control centers or switchboards to be manually operated from outside and complies with IEC 60204-1. It consists of an operating mechanism that is mounted on the breaker, an operating handle that is mounted on the door, and a shaft that transmits the turning force from the handle to the operating unit.
The shaft can be cut to the required length.
The shaft support makes easy to insert to the operating handle when the panel door is being closed.

Handle cover

Operating handle

Shaft support

Square shaft

MCCB WITH THERMAL-MAGNETIC, ELECTRONIC, RESIDUAL CURRENT PROTECTION AND SWITCH-DISCONNECTORS
MSX - MSXD - MSXE - MSXM

ROTARY HANDLES AND LOCKING DEVICES

Direct rotary handle

This external operating handle is used to operate a circuit breaker mounted just behind a compartment door with the door closed. The operating unit and the handle itself are mounted directly onto the circuit breaker. The handle protrudes through a cutout in the door. A moulded door flange is supplied with the external operating handle which covers the cutout from the front.
Padlocking and keylocking is possible in the OFF position.

Locking Devices

Toggle locking devices allow MCCBs to be locked ON or OFF using up to three padlocks. Locking devices for 125A to 160A and 250A frame models accept padlocks with 5mm hasp diameter. Locking devices for 400A to 1600A frame models accept padlock with 8 mm hasp diameter.

MCCB WITH THERMAL-MAGNETIC, ELECTRONIC, RESIDUAL CURRENT PROTECTION AND SWITCH-DISCONNECTORS

MSX - MSXD - MSXE - MSXM

INSULATION ACCESSORIES

Terminal covers

Terminal covers are used to prevent direct contact with live MCCB terminations.
They also provide additional insulation to reduce the possibility of a short circuit between phases or to earth when large conductors are used.

Terminal Cover Lock with Lead Seal

General features

- Terminal covers for 125A to 630A frame models require no tools for installation.
- Terminal covers for 800A to 1250A are fixed using self-tapping screws.
- Terminal covers for 125A to 1250A frame models have an IP20 ingress protection.
- Terminal covers are ordered individually. Two terminal covers are required to cover both the line and load terminals of an MCCB.

Each cover can either be fitted to the top or bottom of the MCCB.

- Terminal covers have a megger measurement hole of 4 mm diameter on each phase.

Options

- A terminal cover for 125A to 630A frame models include facility for an anti-tampering seal to be added.

MCCB WITH THERMAL-MAGNETIC, ELECTRONIC, RESIDUAL CURRENT PROTECTION AND SWITCH-DISCONNECTORS
MSX - MSXD - MSXE - MSXM

INSULATION ACCESSORIES

Terminal Covers for Front Connections

Terminal covers for front connection are suitable for covering the exposed live parts of conductors terminated on the MCCB.

Terminal Covers for Front Connection

Terminal Covers for Front Connection with copper cables

Terminal Covers for Front Connections with copper cables

Terminal covers for front connection with copper cables, available only for 125A frame models, are useful for increasing the ingress protection rating at the terminals without increasing the overall length. They can be used for direct entry of stranded cable with cable clamp terminals (FW).
Flush terminal covers are identical to rear terminal covers for 400A and 630A frame models.
The user can remove a section of the rear terminal cover using a tool to allow entry of the conductor.

Terminal Covers for Rear Connections

Terminal covers for rear connection are available for 125A to 1000A frame models and may be used on MCCBs fitted with rear connections (RC) or plug-in connections. They prevent access to the terminals from the front and top.

Terminal Covers for Rear Connection

MCCB WITH THERMAL-MAGNETIC, ELECTRONIC, RESIDUAL CURRENT PROTECTION AND SWITCH-DISCONNECTORS

MSX - MSXD - MSXE - MSXM

INSULATION ACCESSORIES

Interpole Barriers

Interpole barriers provide maximum insulation between phases at the terminals of the MCCB. They cannot be fitted at the same time as any of the terminal covers. Interpole barriers for use on one end of the MCCB are supplied as standard. Additional interpole barriers can be ordered individually. All interpole barriers can easily be fitted to either end of an MCCB.
MCCB have been designed to accept an additional interpole barrier between two adjacent MCCBs.

MCCB Fitted with Interpole Barriers on Both Ends

Interpole Barriers between Adjacent MCCBs

MCCB WITH THERMAL-MAGNETIC, ELECTRONIC, RESIDUAL CURRENT PROTECTION AND SWITCH-DISCONNECTORS

MSX - MSXD - MSXE - MSXM

ACCESSORIES FOR CHANGEOVER SYSTEM

Where more than one AC voltage source is available to a distribution system it is often necessary to prevent multiple sources supplying the system at one time. Interlocking accessories are used together with two MCCBs to prevent both being in the ON state simultaneously. This provides a secure mechanical means of preventing the connection of two supply sources.
An automatic changeover controller can monitor the status of two supplies and control the switching of two MCCBs according to pre-programmed parameters. When an automatic changeover controller is interfaced to a pair of interlocked MCCBs fitted with remote control accessories, a secure, fully automatic changeover system is achieved.

Link Interlock

Link interlocks are available for 125 A to 1000A frame models and consist of a mechanism mounted to each MCCB in an adjacently mounted pair.
The link between each mechanism inhibits the closure of one MCCB unless the other is in the OFF position.
Link interlocks can be used on a mixture of 3 and 4 pole breakers of the same frame size. Link interlock is an innovative design which will save space, time and money for switchboard builders in that:

- Installation is extremely simple. Link interlocks are field-installable and only require a screwdriver to fit.
- Link interlocks replace the accessory cover on the front of the breaker.
- Motor operators and operating handles are compatible with link interlocks.
- The interlock is installed on the front of the MCCB and does not therefore interfere with copperwork or cables.
- No need to buy factory-built backplates with MCCBs and interlocks pre-fitted.

An important safety feature is that the interlocks do not allow a control system to close a second power supply on to a fault. If a breaker has tripped its partner is mechanically prevented from closing. This differs from other interlocks you may be familiar with, which allow a breaker to be closed while its partner is in the tripped position.
Link interlock operates according to the following table:

	STATUS OF MCCB 1	STATUS OF MCCB 2
ON	ON	VALIDITY OF COMBINATION
ON	TRIP	NOT ALLOWED
TRIP	ON	NOT ALLOWED
TRIP	TRIP	NOT ALLOWED
OFF	OFF	NOT ALLOWED
ON	OFF	ALLOWED
OFF	ON	ALLOWED
TRIP	OFF	ALLOWED
OFF	TRIP	ALLOWED

The electrical control system of an automatic changeover scheme which uses these interlocks should not attempt to switch the MCCBs to a combination indicated as "NOT ALLOWED" in the above table otherwise damage to the motor operations will occur.

For technical information contact the Technical Assistance Service or visit gewiss.com

MCCB WITH THERMAL-MAGNETIC, ELECTRONIC, RESIDUAL CURRENT PROTECTION AND SWITCH-DISCONNECTORS

MSX - MSXD - MSXE - MSXM

ACCESSORIES FOR CHANGEOVER SYSTEM

Wire Interlock

Wire interlocks for 125A to 1000A frame models consist of two mechanisms connected by a cable. The mechanisms are mounted on two MCCBs located at a distance from each other which is limited by the length and bend radius of the cable. The mechanisms and cable inhibit the closure of one MCCB unless the other is in the OFF position. Each mechanism is ordered separately. Cables of 1.0 m or 1.5 m length are also ordered as separate items.
Wire interlocks can be used on a mixture of 3 and 4 pole MCCBs of different frame sizes. This allows potential cost savings by using lower rated MCCBs for the alternative power supply. MCCBs can be mounted in different switchboard compartments or on different planes.
Wire interlock is an innovative design which will save space, time and money for switchboard builders in that:

- Installation is extremely simple. Wire interlocks are field-installable up to 1000A models.
- Wire interlocks replace the accessory cover on the front of the breaker.
- Motor operators and operating handles are compatible with wire interlocks.
- Interlocking of MCCBs mounted in different compartments is possible.
- No need to buy factory-built backplates with MCCBs and interlocks pre-fitted.

Wire interlocks are available also for 1250A and 1600A frame models.
The mechanisms are mounted on the back of two MCCBs. MCCBs cannot be mounted directly to a flat plate, but are installed on a frame to ensure space for the interlock mechanism. (Factory Fit).
An important safety feature is that the interlocks do not allow a control system to close a second power supply on to a fault. If a breaker has tripped its partner is mechanically prevented from closing. This differs from other interlocks you may be familiar with, which allow a breaker to be closed while its partner is in the tripped position.

Wire interlock operates according to the following table:

	STATUS OF MCCB 1	STATUS OF MCCB 2
ON	ON	VALIDITY OF COMBINATION
ON	TRIP	NOT ALLOWED
TRIP	ON	NOT ALLOWED
TRIP	TRIP	NOT ALLOWED
OFF	OFF	NOT ALLOWED
ON	OFF	ALLOWED
OFF	ON	ALLOWED
TRIP	OFF	ALLOWED
OFF	TRIP	ALLOWED

The electrical control system of an automatic changeover scheme which uses these interlocks should not attempt to switch the MCCBs to a combination indicated as "NOT ALLOWED" in the above table otherwise damage to the motor operations will occur.

MCCB WITH THERMAL-MAGNETIC, ELECTRONIC, RESIDUAL CURRENT PROTECTION AND SWITCH-DISCONNECTORS

MSX - MSXD - MSXE - MSXM

ACCESSORIES FOR CHANGEOVER SYSTEM

Automatic Transfer Switch

Automatic Transfer Switch is used in standby power applications.
ATS will monitor the voltage and frequency of the incoming AC mains (utility) supply and in the event of a failure will issue a start command to the generator control system.
ATS is designed to monitor the incoming AC mains supply (1 or 3 phases) for under/over voltage and under/over frequency. Should any of the parameters fall out of limit, ATS will issue a command to the generating set controller.
Once the generator set is available and producing an output within limits, ATS will control the transfer device and switch the load from the mains (utility) to the generating set.
When the mains (utility) supply returns to within limits, the module will command a return to the mains (utility) supply and shut down the generator after a suitable cooling run. Various timing sequences are available to prevent nuisance starting or unnecessary supply breaks.

Product Features

ATS has back-lit LCD with 4 line text display which shows system status and indicates any system warnings.
Red and green LEDs indicate the operational status of the network. Moreover ATS has USB, RS232 e RS485 outputs.
ATS is supplied pre-configured with default values which, if necessary, can be easily modified directly from the front panel.
In the absence of DC power supply, a power supply unit is available to be ordered separately (CWD8887).

- Back-lit LCD with 4 line text display
- Front panel configuration with protection PIN code
- Configurable timers and alarms
- 12 configurable inputs
- 6 configurable volt-free outputs
- 6 configurable DC outputs
- Power and energy monitoring (kW, kWh, kVAr, kVAh, kVArh)
- Event log
- Auto start inhibit
- Load inhibition

MCCB WITH THERMAL-MAGNETIC, ELECTRONIC, RESIDUAL CURRENT PROTECTION AND SWITCH-DISCONNECTORS

MSX - MSXD - MSXE - MSXM

ACCESSORIES FOR CHANGEOVER SYSTEM

Technical data	
Operating voltage	from 8V to 35V DC
Cranking dropouts	Able to survive OV for 50 mS , providing supply was at least 10 V before dropout and supply recovers to 5 V . This is achieved without the need for internal batteries. LEDs and backlight will not be maintained during cranking.
Maximum operating current	$\begin{aligned} & 480 \mathrm{~mA} \text { to } 12 \mathrm{~V} \\ & 360 \mathrm{~mA} \text { to } 24 \mathrm{~V} \end{aligned}$
Maximum standby current	126 mA to 12 V 96 mA to 24 V
Mains (utility) voltage range	15 V to 333V AC (L-N)
Outputs A and E	Normally closed volt-free output 8A AC at 250V AC
Outputs B and F	Normally open volt-free output 8A AC at 250V AC
Outputs C and D	Changeover volt-free output $8 \mathrm{~A} A C$ at 250 V AC
Outputs G, H, I, J, K and L	2 A at supply voltage
Frequency range	3.5 Hz to 75 Hz
Dimensions overall	$240 \mathrm{~mm} \times 181 \mathrm{~mm} \times 42 \mathrm{~mm}$
Panel cut-out	$220 \mathrm{~mm} \times 160 \mathrm{~mm}$
Maximum panel thickness	8 mm
Operating temperature	$-30^{\circ} \mathrm{C} . . .+70^{\circ} \mathrm{C}$
Stocking temperature	$-40^{\circ} \mathrm{C} . . .+85^{\circ} \mathrm{C}$
Degree of protection	IP65 (front of the device with the special gasket supplied)
Communication ports	
USB	
Port to be used only to configure ATS via PC and specific software. Maximum connection distance 6 m . pe B cable required (this is the type of cable used to connect a PC to the USB printer)	

RS232
Modbus RTU protocol
Non-insulated port
Max Baud rate 115200 baud subject to S/W
TX, RX, RTS, CTS, DSR, DTR, DCD
9-pin D-type male connector
Maximum distance 15 m
It is typically used to connect to a telephone or GSM modem for remote communications.
RS485
Modbus RTU protocol
Insulated port
2 cables for data communication + common
Half Duplex
Data direction control for transmission (via s/w protocol)
Max Baud Rate 115200
Required external termination resistance (120@)
Maximum common mode offset 70V (on-board protection via surge arrester)
Maximum distance 1.2 km

For technical information contact the Technical Assistance Service or visit gewiss.com

MCCB WITH THERMAL-MAGNETIC, ELECTRONIC, RESIDUAL CURRENT PROTECTION AND SWITCH-DISCONNECTORS

MSX - MSXD - MSXE - MSXM

ACCESSORIES FOR CHANGEOVER SYSTEM

Power Supply Module for ATS

Supplied as a separate unit, the power supply module for the Automatic Transfer Switch is self-seeking. The module will provide DC power output to the ATS whens mains power is lost, this is achieved by automatically switching between either generator or battery supply.
Housed within a strong plastic casing the module can be either DIN or chassis mounted and has 3 red LEDs which provide system status.

Technical data	
Voltage input	from 90V to 305V AC
Current output	$1 \mathrm{~A} D C$ at 24V DC
Current max	1,5A DC
Operating frequency	from 48 Hz to 64 Hz
Rise time	$<20 \mathrm{~ms}$
Ripple and noise	<1\%
Efficiency	>80\%
Regulation line	<0.1\% Vo
Load	<5\% Vo
Protections	Internal 250V 2A Anti Surge fuses ($20 \mathrm{~mm} \times 5 \mathrm{~mm}$ ceramic type) at mains input and generator power supply. PTC input for battery power supply. External fuses are recommended to protect the power supply input connection cables
Dimensions overall	$136 \mathrm{~mm} \times 140 \mathrm{~mm} \times 63 \mathrm{~mm}$
Weight	0.5 kg
Section of connection cable	0,6 $\div 1,5 \mathrm{~mm}^{2}$
Rated tightening torque	$0,8 \mathrm{Nm}$
Operating temperature	$-30^{\circ} \mathrm{C} . . .+60^{\circ} \mathrm{C}$

MCCB WITH THERMAL-MAGNETIC, ELECTRONIC, RESIDUAL CURRENT PROTECTION AND SWITCH-DISCONNECTORS
 MSX - MSXD - MSXE - MSXM

AUTOMATIC CHANGEOVER WITH TWO MSX/M250c

MCCB OF MAINS POWER SUPPLY S1		
Code	Description	Quantity
MSX/M250c	Circuit breaker for the protection of mains power supply S1	1
GWD8501	Auxiliary contact of open/closed position MSX/M160c-250c	
GWD8502	Auxiliary contact of fault indicator switch SX MSX/M160c-250c	2
GWD8661	Wire mechanical interlock MSX/M250c	1
GWD8581	Motor operator MSX/M250c 240VAC	1

MCCB OF GENERATOR S2		
Code	Description	Quantity
MSX/M250c	Circuit breaker for the protection of generator S2	
CWD8501	Auxiliary contact of open/closed position MSX/M160c-250c	1
GWD8502	Auxiliary contact of fault indicator switch SX MSX/M160c-250c	2
GWD8661	Wire mechanical interlock MSX/M250c	1
CWD8581	Motor operator MSX/M250c 240VAC	1

| AUTOMATIC TRANSFER SWITCH | | |
| :--- | :--- | :--- | :---: |
| Code | Description | Quantity |
| CWD8886 | Automatic transfer switch MSX | 1 |
| CWD8887 | Power supply module for ATS MSX | 1 |

ACCESSORIES

Code	Description	Quantity
CWD8666	Cable for wire interlock MSX/D/E/M/c125-1000	
GW96220	Compact fuses holder 1P+N 10,3X38 690VAC 32A	1
GW96312	Fuses holder 3P+N 10,3X38 690VAC 32A	4
GWD6725	Contactor 40A 2NO+2NC 230V	2
GW74411	Fixed key selector 0-1	
GW74504	Contact 1 N.O. -1 N.C. 10A 250V	1

MCCB WITH THERMAL-MAGNETIC, ELECTRONIC, RESIDUAL CURRENT PROTECTION

 AND SWITCH-DISCONNECTORSMSX - MSXD - MSXE - MSXM

AUTOMATIC CHANGEOVER WITH TWO MSX125

MCCB OF MAINS POWER SUPPLY S1		
Code	Description	Quantity
MSX125	Circuit breaker for the protection of mains power supply S1	1
CWD8504	Auxiliary contact of open/closed position MSX/D/E/M125-1600	2
GWD8505	Auxiliary contact of fault indicator switch MSX/D/E/M125-1600	1
GWD8662	Wire mechanical interlock MSX125	1
GWD8584	Motor operator MSX/D125 240VAC	1
MCCB OF GENERATOR S2		
Code	Description	Quantity
MSX125	Circuit breaker for the protection of generator S2	1
GWD8504	Auxiliary contact of open/closed position MSX/D/E/M125-1600	2
GWD8505	Auxiliary contact of fault indicator switch MSX/D/E/M125-1600	1
GWD8662	Wire mechanical interlock MSX125	1
GWD8584	Motor operator MSX/D125 240VAC	1
AUTOMATIC TRANSFER SWITCH		
Code	Description	Quantity
GWD8886	Automatic transfer switch MSX	1
GWD8887	Power supply module for ATS MSX	1

ACCESSORIES

Code	Description	Quantity
GWD8666	Cable for wire interlock MSX/D/E/M/c125-1000	
GW96220	Compact fuses holder 1P+N 10,3X38 690VAC 32A	1
GW96312	Fuses holder 3P+N 10,3X38 690VAC 32A	4
GWD6725	Contactor 40A 2NO+2NC 230V	2
GW74411	Fixed key selector 0-1	
GW74504	Contact 1N.O. -1 N.C. 10A 250V	1

MCCB WITH THERMAL-MAGNETIC, ELECTRONIC, RESIDUAL CURRENT PROTECTION AND SWITCH-DISCONNECTORS

MSX - MSXD - MSXE - MSXM

AUTOMATIC CHANGEOVER WITH TWO MSX/E160-250

| MCCB OF MAINS POWER SUPPLY S1 | | |
| :--- | :--- | :--- | :--- |
| Code | Description | Quantity |
| MSX/E160-250 | Circuit breaker for the protection of mains power supply S1 | |
| GWD8504 | Auxiliary contact of open/closed position MSX/D/E/M125-1600 | 1 |
| GWD8505 | Auxiliary contact of fault indicator switch MSX/D/E/M125-1600 | 2 |
| GWD8663 | Wire mechanical interlock MSX/E160-250 | |
| GWD8590 | Motor operator MSX/D/E160-250 240VAC | 1 |

MCCB OF GENERATOR S2		
Code	Description	Quantity
MSX/E160-250	Circuit breaker for the protection of generator S2	
GWD8504	Auxiliary contact of open/closed position MSX/D/E/M125-1600	1
GWD8505	Auxiliary contact of fault indicator switch MSX/D/E/M125-1600	2
GWD8663	Wire mechanical interlock MSX/E160-250	
GWD8590	Motor operator MSX/D/E160-250 240VAC	1

AUTOMATIC TRANSFER SWITCH			
Code	Description	Quantity	
CWD8886		Automatic transfer switch MSX	1
CWD8887	Power supply module for ATS MSX	1	

ACCESSORIES

Code	Description	Quantity
CWD8666	Cable for wire interlock MSX/D/E/M/c125-1000	
GW96220	Compact fuses holder 1P+N 10,3X38 690VAC 32A	1
GW96312	Fuses holder 3P+N 10,3X38 690VAC 32A	4
GWD6725	Contactor 40A 2NO+2NC 230V	2
GW74411	Fixed key selector 0-1	
GW74504	Contact 1 N.O. -1 N.C. 10 A 250V	1

MCCB WITH THERMAL-MAGNETIC, ELECTRONIC, RESIDUAL CURRENT PROTECTION

 AND SWITCH-DISCONNECTORSMSX - MSXD - MSXE - MSXM

AUTOMATIC CHANGEOVER WITH TWO MSX/E/M400-630

| MCCB OF MAINS POWER SUPPLY S1 | | |
| :--- | :--- | :--- | :--- |
| Code | Description | Quantity |
| MSX/E/M400-630 | Circuit breaker for the protection of mains power supply S1 | |
| GWD8504 | Auxiliary contact of open/closed position MSX/D/E/M125-1600 | 1 |
| GWD8505 | Auxiliary contact of fault indicator switch MSX/D/E/M125-1600 | 2 |
| GWD8664 | Wire mechanical interlock MSX/E/M400-630 | |
| GWD8595 | Motor operator MSX/E/M400-630 240VAC | 1 |

| MCCB OF GENERATOR S2 | | |
| :--- | :--- | :--- | :--- |
| Code | Description | Quantity |
| MSX/E/M400-630 | Circuit breaker for the protection of generator S2 | 1 |
| CWD8504 | Auxiliary contact of open/closed position MSX/D/E/M125-1600 | |
| CWD8505 | Auxiliary contact of fault indicator switch MSX/D/E/M125-1600 | 2 |
| CWD8664 | Wire mechanical interlock MSX/E/M400-630 | 1 |
| GWD8595 | Motor operator MSX/E/M400-630 240VAC | 1 |

| AUTOMATIC TRANSFER SWITCH | | |
| :--- | :--- | :--- | :---: |
| Code | Description | Quantity |
| GWD8886 | Automatic transfer switch MSX | 1 |
| CWD8887 | Power supply module for ATS MSX | 1 |

ACCESSORIES

Code	Description	Quantity
GWD8666	Cable for wire interlock MSX/D/E/M/c125-1000	
GW96220	Compact fuses holder 1P+N 10,3X38 690VAC 32A	1
GW96312	Fuses holder 3P+N 10,3X38 690VAC 32A	4
GWD6725	Contactor 40A 2NO+2NC 230V	2
GW74411	Fixed key selector 0-1	
GW74504	Contact 1 N.0. -1 N.C. 10A 250V	1

MCCB WITH THERMAL-MAGNETIC, ELECTRONIC, RESIDUAL CURRENT PROTECTION AND SWITCH-DISCONNECTORS

MSX - MSXD - MSXE - MSXM

AUTOMATIC CHANGEOVER WITH TWO MSX/E/M1000

MCCB OF MAINS POWER SUPPLY S1		
Code		Description
MSX/E/M1000	Circuit breaker for the protection of mains power supply S1	Quantity
GWD8504	Auxiliary contact of open/closed position MSX/D/E/M125-1600	1
GWD8505	Auxiliary contact of fault indicator switch MSX/D/E/M125-1600	2
GWD8665	Wire mechanical interlock MSXE/M1000	
GWD8598	Motor operator MSX/E/M1000 240VAC	1

MCCB OF GENERATOR S2		
Code	Description	Quantity
MSX/E/M1000	Circuit breaker for the protection of generator S2	
CWD8504	Auxiliary contact of open/closed position MSX/D/E/M125-1600	1
GWD8505	Auxiliary contact of fault indicator switch MSX/D/E/M125-1600	2
GWD8665	Wire mechanical interlock MSXE/M1000	1
CWD8598	Motor operator MSX/E/M1000 240VAC	1

AUTOMATIC TRANSFER SWITCH			
Code	Description	Quantity	
CWD8886		Automatic transfer switch MSX	1
CWD8887	Power supply module for ATS MSX	1	

ACCESSORIES

Code	Description	Quantity
CWD8666	Cable for wire interlock MSX/D/E/M/c125-1000	
GW96220	Compact fuses holder 1P+N 10,3X38 690VAC 32A	1
GW96312	Fuses holder 3P+N 10,3X38 690VAC 32A	4
GWD6725	Contactor 40A 2NO+2NC 230V	2
GW74411	Fixed key selector 0-1	
GW74504	Contact 1 N.O. -1 N.C. 10 A 250V	1

MCCB WITH THERMAL-MAGNETIC, ELECTRONIC, RESIDUAL CURRENT PROTECTION AND SWITCH-DISCONNECTORS

MSX - MSXD - MSXE - MSXM

AUTOMATIC CHANGEOVER WITH TWO MSXE/M1250-1600

MCCB OF MAINS POWER SUPPLY S1		
Code	Description	Quantity
MSXE/M1250-1600 with mechanical interlock (es. CWD9426B)	Circuit breaker for the protection of mains power supply S1	1
GWD8504	Auxiliary contact of open/closed position MSX/D/E/M125-1600	2
GWD8505	Auxiliary contact of fault indicator switch MSX/D/E/M125-1600	1
GWD8602	Motor operator MSX/E/M1250-1600 230VAC	

MCCB OF GENERATOR S2		
Code	Description	Quantity
MSXE/M1250-1600 with mechanical interlock (es. CWD9426B)	Circuit breaker for the protection of generator S2	1
GWD8504	Auxiliary contact of open/closed position MSX/D/E/M125-1600	2
GWD8505	Auxiliary contact of fault indicator switch MSX/D/E/M125-1600	1
GWD8602	Motor operator MSX/E/M1250-1600 230VAC	1

AUTOMATIC TRANSFER SWITCH			
Code	Description	Quantity	
CWD8886		Automatic transfer switch MSX	1
CWD8887	Power supply module for ATS MSX	1	

ACCESSORIES		
Code	Description	Quantity
CWD8668	Cable for wire interlock MSXE/M1250-1600	
CW96220	Compact fuses holder 1P+N 10,3X38 690VAC 32A	1
GW96312	Fuses holder 3P+N 10,3X38 690VAC 32A	4
GWD6725	Contactor 40A 2NO+2NC 230V	2
GW74411	Fixed key selector 0-1	2
GW74504	Contact 1 N.0. -1 N.C. 10A 250V	1

COMPACT MCCB WITH THERMAL-MAGNETIC PROTECTION
AND COMPACT SWITCH-DISCONNECTORS
MSX/M 160c - MSX/M 250c

ACCESSORIES AND CONNECTION/MOUNTING OPTIONS

Connection type	Front connection			Rear connection
	With front terminals FC	With front extended or spread terminals FB	With front terminals for copper cables FW	With rear terminals RC
Outer view Breaker				
MSX/M 160c	(from 125A to 160A)	\bigcirc	(from 20A to 100A)	\bigcirc
MSX/M 250c	-	-	X	-
	- Connect cables with crimp lugs or flat bars directly to breaker terminals.	- Front extended or spread terminals must be connected to breaker front terminals. Connect cables with crimp lugs or flat bars to front extended or spread terminals.	- Front terminals for copper cables are mounted on breaker and they cannot be removed and replaced with other types of terminals. Connect wires without crimp lug directly to breaker terminals.	- Rear terminals can be rotated in steps of 45 degrees or 90 degrees.

Note:

- Standard. This configuration used unless otherwise specified.
- Optional standard. Specify when ordering.

X "no" or "not available".

Terminal Screws Sizes and Standard Torques

		Front connection			Rear connection		
Frame	Breaker	Front terminals FC	Front extended or spread terminals FB		Rear terminals		Pan head
		Screw size (A) Torque (N.m)	Screw size (B) Torque (N.m)	Screw size (C) Torque (N.m)	Screw size (D) Torque (N.m)	Screw size (E) Torque (N.m)	3
160	$\begin{aligned} & \text { MSX/M 160c } \\ & (20-100 A) \end{aligned}$	Breakers with front terminals for copper cables FW					5
	MSX/M 160c (125-160A)	$\begin{gathered} \text { Pan head M8x14 } \\ 4.9 \sim 6.9 \end{gathered}$	$\begin{gathered} \text { Pan head M8x14 } \\ 4.9 \sim 6.9 \end{gathered}$	$\begin{gathered} \text { Hex head } \\ \text { M8x30 } \\ 11.8 \sim 18.6 \end{gathered}$	Hex head M6x14 7.8~11.8	$\begin{gathered} \text { Hex head } \\ \text { M8x23 } \\ 11.8 \sim 18.6 \end{gathered}$	Hex socket head bolt
250	MSX/M 250c	$\begin{gathered} \text { Hex head } \\ \text { M8x18 } \\ 7.8 \sim 12.7 \end{gathered}$	$\begin{gathered} \text { Hex head } \\ \text { M8x18 } \\ 7.8 \sim 12.7 \end{gathered}$	Hex head M10×25 22.5~37.2	$\begin{gathered} \text { Hex head } \\ \text { M6x18 } \\ 7.8 \sim 11.8 \end{gathered}$	$\begin{gathered} \text { Hex head } \\ \text { M8x25 } \\ 11.8 \sim 18.6 \end{gathered}$	

COMPACT MCCB WITH THERMAL-MAGNETIC PROTECTION
 AND COMPACT SWITCH-DISCONNECTORS

MSX/M 160c - MSX/M 250c

ACCESSORIES AND CONNECTION/MOUNTING OPTIONS

Connection of cables terminated with crimp lugs

Crimp lugs types

Each terminal on 250A models has a serrated surface. This provides excellent grip for heavy cables terminated with crimp lug terminals, thereby preventing sideways rotation of the lug.

Maximum dimensions of crimp lug		
Frame Size (A)	160	250
Width, W (mm)	17.2	25
Diameter, d (mm)	8.5	9
Maximum from centre to tip, e(mm)	9.5	11

COMPACT MCCB WITH THERMAL-MAGNETIC PROTECTION

AND COMPACT SWITCH-DISCONNECTORS
MSX/M 160c - MSX/M 250c

INSULATION DISTANCE

The insulation distance between the breaker and earthed metal parts and insulators shown in the table on the next page must be maintained to prevent arcing faults occurring due to conductive ionised gas. In addition, completely cover exposed conductors, to their roots at the breaker or to below the height protected by interpole barriers, on the line side of the breaker using insulation tube or tape, in order to provide positive protection against short circuit or ground fault due to the metal chipping, surge voltage, dust particles or salt. Be sure to install the interpole barriers supplied with the breaker.

A Distance from lower breaker to exposed live part of upper breaker terminal (front connection) or distance from lower breaker to end face of upper breaker (rear connection).
B1 Distance from end face of breaker to top plate.
B2 Distance from end face of breaker to insulation plate.
C Gap between breakers.
D Distance from side of breaker to side plate (earthed metal).
E Dimension of insulation over exposed conductors.

COMPACT MCCB WITH THERMAL-MAGNETIC PROTECTION
 AND COMPACT SWITCH-DISCONNECTORS

MSX/M 160c - MSX/M 250c

INSULATION DISTANCE

Tables of insulation distances

Breaker	A Note (1)	B1	B2	C	D	E
MSX/M 160c	50	50	10	* Possible to set close	25	Not less than the length of the bare live part Note (2)
MSX/M 250c	50	40	40	* Possible to set close	50	Not less than the length of the bare live part Note (2)

Notes:
(1) The figures are for lower breakers.
(2) For front connection breakers, insulate all exposed conductors of the line side until the breaker end. If interpole barriers are packed, be sure to use the barriers; more over, insulate all exposed conductors by insulating tape or the like so that the tape overlaps with the barriers.

* If using extension bars (optional), ensure the insulation distance specified for the application.

DIRECTION OF POWER SUPPLY

The breakers are available for normal connection by default. Reverse connection is optional.
See tables below.

Normal
connection

Reverse
connection

COMPACT MCCB WITH THERMAL-MAGNETIC PROTECTION

AND COMPACT SWITCH-DISCONNECTORS
MSX/M 160c - MSX/M 250c

TEMPERATURE RATINGS

Rated currents depending on ambient temperature for compact MCCBs

Breaker	Connection Type	Rating at Calibration temperature $\left(50^{\circ} \mathrm{C}\right)$	Rated current (A)		
			$\left(55^{\circ} \mathrm{C}\right)$	$\left(60^{\circ} \mathrm{C}\right)$	$\left(65^{\circ} \mathrm{C}\right)$
MSX/M 160c	Front Rear	25A	24	24	23
		40A	39	37	36
		63A	61	59	57
		80A	77	73	70
		100A	97	94	91
		125A	122	118	115
		160A	156	152	149
MSX/M 250c	Front Rear	160A	156	152	148
		250A	243	236	229

Note:
Supplied with terminal bars fitted as standard. Temperature ratings are not valid if the terminal bars are removed.

MCCB WITH THERMAL-MAGNETIC, ELECTRONIC, RESIDUAL CURRENT PROTECTION AND SWITCH-DISCONNECTORS
MSX - MSXD - MSXE - MSXM

ACCESSORIES AND CONNECTION/MOUNTING OPTIONS

MSX MCCBs connection and mounting accessories facilitate easy installation in any arrangement. Breakers and accessories are easy to fit. They are designed to provide safe and secure termination and mounting points.

Connection and mounting options overview diagram

The MSX/D 125, MSX/D 160 and MSX/D 250 models can be mounted on 35 mm DIN rail along side the modular devices by means of a fixing bracket. In addition, 45 mm high window panels can be used.
The MSXE 160 and MSXE 250 models cannot be installed on DIN rail.

MCCB WITH THERMAL-MAGNETIC, ELECTRONIC, RESIDUAL CURRENT PROTECTION AND SWITCH-DISCONNECTORS

MSX - MSXD - MSXE - MSXM

ACCESSORIES AND CONNECTION/MOUNTING OPTIONS

Connection of Busbars and Terminated Cables

The front terminals FC are supplied for all MSX range circuit breakers from frame size 125A up to 630A. Solid conductors or cables terminated with crimp lug terminals can be used.

Connection with front terminals FC

Each terminal on 160A and 250A models has a serrated surface. This provides excellent grip for heavy cables terminated with crimp lug terminals, thereby preventing sideways rotation of the lug.

Maximum dimensions of crimp lug					
Frame Size (A)	125	$160-250$	$400-630$		
Width, $\mathbf{W}(\mathbf{m m})$	17	25	25		
Diameter, d (mm)	9	9	11		
Maximum from centre to tip, dim e (mm)	8.5	10	12		

Connection with extended or spread front terminals FB

Extended or spread front terminals FB are an extension of front terminal FC which can be fitted to line or load side terminals of circuit breaker. They are used to connect multiple conductors or large conductors.

MCCB WITH THERMAL-MAGNETIC, ELECTRONIC, RESIDUAL CURRENT PROTECTION AND SWITCH-DISCONNECTORS
MSX - MSXD - MSXE - MSXM

ACCESSORIES AND CONNECTION/MOUNTING OPTIONS

Direct Entry of Stranded Cable

Connection with front terminals for copper cables FW

Front terminals for copper cables FW can be used to connect stranded cables without crimp lug directly to the MCCB.

Model	Cable Capacity (mm²)
MSX/D 125	$\min : 1,5$
	$\max : 50$

Connection of Busbars

Connection with rear terminals RC

Rear terminals RC allow connection of conductors in a different switchboard compartment to the MCCB body.

The rear terminal can be rotated in steps of 45 degrees on a 125 A to 630A frame MCCBs and 90 degrees on a 800A and 1250A frame MCCBs.

MCCB WITH THERMAL-MAGNETIC, ELECTRONIC, RESIDUAL CURRENT PROTECTION AND SWITCH-DISCONNECTORS

MSX - MSXD - MSXE - MSXM

ACCESSORIES AND CONNECTION/MOUNTING OPTIONS

Plug-in Mounting

The plug in mounting system allows fast replacement of the MCCB body without the need to disturb the terminations. Solid conductors or cables terminated with compression terminals can be used.

Plug-In Safety Lock

The plug-in MCCB body is automatically locked to the base when the contacts are closed (toggle ON). It cannot be removed unless the contacts are in the open position (toggle OFF or TRIPPED). This system ensures safe removal of the MCCB from the base.

The connection bars for plug-in bases are optional and can be configured in the field either for front or rear access. The illustrations below show possible mounting and connection options for plug in bases. These mounting and connection options are available from 125A to 800A frame models.

1. Mounted on base plate with connection bars mounted for front access. Insulation plates are supplied as standard and must be fitted.

2. Terminations in separate compartment. Connection bars are mounted for top access at the top and rear access at the bottom.

3. Mounted on angle bars. Connection bars are mounted for rear access.

MCCB WITH THERMAL-MAGNETIC, ELECTRONIC, RESIDUAL CURRENT PROTECTION AND SWITCH-DISCONNECTORS

MSX - MSXD - MSXE - MSXM

INSULATION DISTANCES

The insulation distances between the MCCB and earthed metal parts and insulators shown in this section must be maintained to prevent arcing faults occurring due to conductive ionised gas.

In cases where other specifications require different insulation distances to those shown here, the greater distance must be maintained. In cases where two different models are installed one above the other, the insulation distance between the two models should be as for the lower model.

ATTENTION

Exposed conductors must be insulated up to the breaker terminals. Interpole barriers or optional terminal covers are recommended.
If optional terminal covers are used, insulate the exposed conductor until it overlaps the terminal cover.

Insulation distances

1. Insulation plate
2. Top plate (earthed metal)
3. Interpole barrier
4. Front-connected type
5. Front-connected type with extension bar
6. Rear-connected type, plug-in type
7. Side panel
8. A. Distance from lower breaker to exposed live part of upper breaker terminal (front-connected type) or distance from lower breaker to end face of upper breaker (rear-connected type or plug-in type)
B1. Distance from end face of breaker to top plate
B2. Distance from end face of breaker to insulation plate
C. Gap between breakers
D. Distance from side of breaker to side panel (earthed metal)
E. Dimensions of insulation over exposed conductors

MCCB WITH THERMAL-MAGNETIC, ELECTRONIC, RESIDUAL CURRENT PROTECTION AND SWITCH-DISCONNECTORS
MSX - MSXD - MSXE - MSXM
INSULATION DISTANCE IN mm (AT 690V AC Maximum)

Model	Breaking capacity	A	B1	B2	C ${ }^{(4)}$	D	E
MSX/D 125	25 kA	50	40	10	0	25	*(1)
	36 kA	50	$40^{(2)}$	10	0	25	*(1)
	65 kA	75	45	25	0	25	*(1)
MSX/D 160	25 kA	50	40	30	0	25	*(1)
	36 kA	50	40	30	0	25	*(1)
	65 kA	100	80	60	0	50	*(1)
MSX/D 250	25 kA	50	40	30	0	25	*(1)
	36 kA	50	40	30	0	25	*(1)
	65 kA	100	80	30	0	25	*(1)
MSXE 160 MSXE 250	36 kA	50	40	30	0	25	*(1)
	65 kA	100	80	30	0	25	*(1)
MSX 400	36 kA	100	80	40	0	30	*(1)
	50 kA	100	80	40	0	30	*(1)
MSXE 400 MSXE 630	36 kA	120	100	80	0	80	*(1)
	50 kA	120	100	80	0	80	*(1)
MSXE 1000 (800A)	50 kA	120	100	80	0	80	*(1)
MSXE 1000 (1000A)	50 kA	150	120	80	0	80	*(1)
MSXE 1250	50 kA	150	120	80	0	80	*(1)
MSXE 1600	50 kA	150	150	100	0	100	*(1)

*Note:

${ }^{(1)}$ Insulate the exposed conductor until it overlaps the moulded case at the terminal, or the terminal cover.
${ }^{(2)} 10 \mathrm{~mm}$ at 440 V AC Maximum.
${ }^{(3)}$ Take care that arc gases are emitted to both line and load sides.
${ }^{(4)}$ If using extension bars (optional), ensure the insulation distance for the application.

MCCB WITH THERMAL-MAGNETIC, ELECTRONIC, RESIDUAL CURRENT PROTECTION AND SWITCH-DISCONNECTORS
MSX - MSXD - MSXE - MSXM

MOUNTING ANGLE

MSX MCCBs may be mounted at any angle without affecting performance.

Mounting angle does not affect performance.

Direction of Power Supply

Power can be supplied through MSX MCCBs in either direction without loss of performance.

MCCB WITH THERMAL-MAGNETIC, ELECTRONIC, RESIDUAL CURRENT PROTECTION AND SWITCH-DISCONNECTORS

MSX - MSXD - MSXE - MSXM

STANDARD INSTALLATION ENVIRONMENT

MSX MCCBs are intended for installation in the following conditions as standard:

- Operating ambient temperature -10 degrees C to 50 degrees C .

Refer to the tables below for thermal derating information above this temperature.

- Relative humidity of up to 85%.
- Altitude up to 2000 m .
- Atmospheres free from dust, smoke, corrosive gases, inflammable gases, moisture and salt.

TEMPERATURE RATINGS

Rated currents depending on ambient temperature for MSX MCCBs and MSXD RCBOs.

MCCB Type	Connection Type	Rating at calibration temperature $\left(50^{\circ} \mathrm{C}\right)$	Rated Current (A)			
			$50^{\circ} \mathrm{C}$	55 ${ }^{\circ} \mathrm{C}$	$60^{\circ} \mathrm{C}$	$65^{\circ} \mathrm{C}$
MSX/D 125	Front Rear Plug-in	20A	20	18.5	18	17.5
		32A	32	30.5	30	29
		50A	50	45	43	41
		63A	63	57	55	52
		100A	100	94	90	87
		125A	125	117	113	109
MSX/D 160	Front Rear Plug-in	160A	160	151	146	141
MSX/D 250	Front Rear Plug-in	250A	250	235	227	219
MSX 400	Front Rear Plug-in	400A	400	380	369	358

Rated currents depending on ambient temperature for MSXE electronic MCCBs

Electronic Models			Rated Current (A)					
MCCB Type	Connection Type	Rating at calibration temperature ($40^{\circ} \mathrm{C}$)	$30^{\circ} \mathrm{C}$	$40^{\circ} \mathrm{C}$	$50^{\circ} \mathrm{C}$	$55^{\circ} \mathrm{C}$	$60^{\circ} \mathrm{C}$	$65^{\circ} \mathrm{C}$
MSXE 160 MSXE 250	Front Rear Plug-in	40 A	40A	40A	40A	40A	40A	40A
		125A						
		160A						
	Front Rear	250A	250	250	237.5	225	200	200
	Plug-in	250A	250	225	200	200	157.5	157.5
MSXE 400	Front Rear Plug-in	400A	400	400	400	380	360	320
MSXE 630	Front Rear	630A	630	630	630	598.5	567	504
	Plug-in	630A	536	536	504	397	397	397
MSXE 1000 (800A)	Front	800A	800	800	800	720	640	504
	Rear, Plug-in	800A	800	800	760	720	640	504
MSXE 1000 (1000A) ${ }^{(1)}$	Front Rear	1000A	1000	1000	900	800	630	630
MSXE 1250 ${ }^{(1)}$	Front	1250A	1250	1250	1250	1000	787	787
	Rear	1250A	1250	1250	1125	1000	787	787
MSXE 1600 ${ }^{(1)}$	Front	1600A	1600	1600	1600	1440	1280	1008
	Rear	1600A	1600	1600	1520	1440	1280	1008

Note:
${ }^{11}$ Supplied with terminal bars fitted as standard. Temperature ratings are not valid if the terminal bars are removed.

COMPACT MCCB AND SWITCH DISCONNECTORS

MSX 160c, MSXM 160c

FRONT TERMINALS

Front extended and spread terminals FB

E: Handle Centre Line

L: Handle Frame Centre Line

COMPACT MCCB AND SWITCH DISCONNECTORS

MSX 160c, MSXM 160c
REAR TERMINALS

Rear terminals RC

Rated current (A)	A	B	C	D	E	F
$\mathbf{1 2 5 - 1 6 0}$	12.5	8.5	4	13	16	5

PANEL CUTOUT

Panel cutout dimensions shown give an allowance of 1.0 mm or more around the handle escutcheon.

DRILLIN PLAN
(front view)

COMPACT MCCB AND SWITCH DISCONNECTORS

MSX 250c, MSXM 250c
FRONT TERMINALS

Front terminals FC

Front extended and spread terminals FB

E: Handle Centre Line th: Handle Frame Centre Line

COMPACT MCCB AND SWITCH DISCONNECTORS

MSX 250c, MSXM 250c
REAR TERMINALS

Rear terminals RC

PANEL CUTOUT
(front view)

Panel cutout dimensions shown give an allowance of 1.0 mm around the handle escutcheon.

DRILLIN PLAN

MCCB AND MCCB WITH RESIDUAL CURRENT PROTECTION

MSX 125 fixed version, MSXD 125

FRONT TERMINALS

Front terminals for cables FW and front terminals FC
$3 P$

Front extended terminals FB

Preparation of conductor

4P

E: Handle Centre Line

MCCB AND MCCB WITH RESIDUAL CURRENT PROTECTION
 MSX 125 fixed version, MSXD 125

REAR TERMINALS

Rear terminals RC

PANEL CUTOUT

Panel cutout dimensions shown give an allowance of 1.0 mm or more around the handle escutcheon.

DRILLIN PLAN

MCCB AND MCCB WITH RESIDUAL CURRENT PROTECTION
 MSX 125 fixed version, MSXD 125

FRONT TERMINALS WITH MOTOR OPERATOR

PANEL HINGE POSITION

Panel hinge position (hatching area) bottom view

MCCB AND MCCB WITH RESIDUAL CURRENT PROTECTION
 MSX 125 fixed version, MSXD 125

REAR TERMINALS WITH MOTOR OPERATOR

PANEL CUTOUT

Panel cutout (Front view)

Panel cutout dimensions shown give an allowance of 1.5 mm around the handle escutcheon.

DRILLIN PLAN

MCCB msx 125 plug-in version

DIMENSIONS

Outline

TERMINATION OF BUSBAR

Preperation of conductor

E: Handle Centre Line

MCCB MSx 125 plug-in version

Drilling plan (front view)
$\begin{array}{ll}3 P & 4 P \\ H & H\end{array}$

Detail of connecting part
Oriented for rear access

MCCB msx 125 plug-in version

MOUNTING ON THE BACK OF FIXING PLATE

(rear view)

Drilling plan (front view)

MCCB MSx 125 plug-in version

MOUNTING ON THE FRONT OF FIXING PLATE

Drilling plan (front view)

$$
\begin{array}{ll}
3 P & 4 P \\
\text { H } & \text { H }
\end{array}
$$

Detail of connecting part
Oriented for front access

MCCB AND MCCB WITH RESIDUAL CURRENT PROTECTION
 MSX 160, MSX 250 fixed version, MSXD 160, MSXD 250

FRONT TERMINALS FC

Preparation of conductor

Front extended terminals FB

E: Handle Centre Line L: Handle Frame Centre Line

MCCB AND MCCB WITH RESIDUAL CURRENT PROTECTION
 MSX 160, MSX 250 fixed version, MSXD 160, MSXD 250

REAR TERMINALS RC

PANEL CUTOUT

Panel cutout dimensions shown give an allowance of 1.0 mm or more around the handle escutcheon.

DRILLIN PLAN

MCCB AND MCCB WITH RESIDUAL CURRENT PROTECTION
 MSX 160, MSX 250 fixed version, MSXD 160, MSXD 250

FRONT TERMINALS WITH MOTOR OPERATOR

PANEL HINGE POSITION
(hatching area)
bottomview

MCCB AND MCCB WITH RESIDUAL CURRENT PROTECTION
 MSX 160, MSX 250 fixed version, MSXD 160, MSXD 250

REAR TERMINALS WITH MOTOR OPERATOR

PANEL CUTOUT

Panel cutout dimensions shown give an allowance of 1.5 mm around the handle escutcheon

DRILLIN PLAN

MCCB MsX 160, MSX 250 plug-in version

DIMENSIONS

TERMINATION OF BUSBAR

MOUNTING ON A SUPPORT OR RAILS

Drilling plan(front view)

Detail of connecting part
Oriented for rear access

Terminal bars should be connected altemately on adjacent poles.

MCCB MSX 160, MSX 250 plug-in version

MOUNTING ON THE BACK OF FIXING PLATE

Drilling plan (front view)

Terminal bars should be connected alternately on adjacent poles.

MCCB Msx 160, Msx 250 plug-in version

MOUNTING ON THE FRONT OF FIXING PLATE

Drilling plan (front view)

ELECTRONIC MCCB мsXe 160, msxe 250 fixed version

FRONT TERMINALS FC

Front extended terminals FB

ELECTRONIC MCCB мsXe 160, msXe 250 fixed version

REAR TERMINALS RC

PANEL CUTOUT
(front view)

Panel cutout dimensions shown give an allowance of 1.0 mm or more around the handle escutcheon.

DRILLIN PLAN
(front view)

ELECTRONIC MCCB msXe 160, msXe 250 fixed version

FRONT TERMINALS WITH MOTOR OPERATOR

PANEL HINGE POSITION
(hatching area)
bottom view

ELECTRONIC MCCB мsXe 160, msXe 250 fixed version

REAR TERMINALS WITH MOTOR OPERATOR

PANEL CUTOUT

Panel cutout dimensions shown give an allowance of 1.5 mm around the handle escutcheon.

DRILLIN PLAN
(front view)

ELECTRONIC MCCB msxe 160, msXe 250 plug-in version

DIMENSIONS

TERMINATION OF BUSBAR
Preperation of conductor

E: Handle Centre Line

ELECTRONIC MCCB msxe 160, msxe 250 plug-in version

MOUNTING ON A SUPPORT OR RAILS

(rear view)

Drilling plan (front view)

Drilling plan (front view)
Oriented for rear access

Terminal bars should be connected altemately on adjacent poles

ELECTRONIC MCCB msxe 160, msXe 250 plug-in version

MOUNTING ON THE BACK OF FIXING PLATE

Drilling plan (front view)

Detail of connecting part
Oriented for rear access

Terminal bars should be connected alternately on adjacent poles

ELECTRONIC MCCB msxe 160, msxe 250 plug-in version

MOUNTING ON THE FRONT OF FIXING PLATE

Drilling plan (front view)
$3 P$
H

Detail of connecting part Oriented for front access

MCCB, ELECTRONIC MCCB AND SWITCH DISCONNECTORS

MSX 400, MSXE 400, MSXM 400 fixed version, MSXE 630, MSXM 630 fixed version
FRONT TERMINALS FC

MCCB, ELECTRONIC MCCB AND SWITCH DISCONNECTORS

MSX 400, MSXE 400, MSXM 400 fixed version, MSXE 630, MSXM 630 fixed version
REAR TERMINALS RC

PANEL CUTOUT
(front view)

Panel cutout dimensions shown give an allowance of 1.0 mm around the handle escutcheon.

DRILLIN PLAN
(frontview)

MCCB, ELECTRONIC MCCB AND SWITCH DISCONNECTORS
MSX 400, MSXE 400, MSXM 400 fixed version, MSXE 630, MSXM 630 fixed version
FRONT TERMINALS WITH MOTOR OPERATOR

Preparation of 400A
conductor On side 36

PANEL HINGE POSITION

MCCB, ELECTRONIC MCCB AND SWITCH DISCONNECTORS
 MSX 400, MSXE 400, MSXM 400 fixed version, MSXE 630, MSXM 630 fixed version

FRONT TERMINALS WITH EXTENSION BARS

PANEL CUTOUT
(front view)

Panel cutout dimensions shown give an allowance of 1.5 mm around motor operator

DRILLIN PLAN

(front view)

MCCB, ELECTRONIC MCCB AND SWITCH DISCONNECTORS
MSX 400, MSXE 400, MSXM 400 fixed version, MSXE 630, MSXM 630 fixed version
REAR TERMINALS WITH MOTOR OPERATOR

Drilling pian
(front view)

E: Handle Centre Line

MCCB, ELECTRONIC MCCB AND SWITCH DISCONNECTORS
 MSX 400, MSXE 400, MSXM 400 plug-in version, MSXE 630, MSXM 630 plug-in version

DIMENSIONS

Outline

Preperation of conductor

MCCB, ELECTRONIC MCCB AND SWITCH DISCONNECTORS

MSX 400, MSXE 400, MSXM 400 fixed version, MSXE 630, MSXM 630 fixed version

MOUNTING ON A SUPPORT OR RAILS

Detail of connecting part
Oriented far rear access

Terminal bars should be connected
alternately on adjacent poles.

MCCB, ELECTRONIC MCCB AND SWITCH DISCONNECTORS

MSX 400, MSXE 400, MSXM 400 plug-in version, MSXE 630, MSXM 630 plug-in version

MOUNTING ON THE BACK OF FIXING PLATE

(rear view)

Drilling plan (front view)
3P
4P
H
H

Detail of connecting part
Oriented far rear access

Teminal bars should be connected alternately on adjacent poles.

MCCB, ELECTRONIC MCCB AND SWITCH DISCONNECTORS

MSX 400, MSXE 400, MSXM 400 fixed version, MSXE 630, MSXM 630 fixed version
MOUNTING ON THE FRONT OF FIXING PLATE

Drilling plan (front view)

Detail of connecting part Oriented far front access

ELECTRONIC MCCB AND SWITCH DISCONNECTORS

MSXE 1000 (800A), MSXM 1000 (800A) fixed version

FRONT EXTENDED TERMINALS FB

(front view)

ELECTRONIC MCCB AND SWITCH DISCONNECTORS
 MSXE 1000 (800A), MSXM 1000 (800A) fixed version

FRONT TERMINALS FC

ELECTRONIC MCCB AND SWITCH DISCONNECTORS

MSXE 1000 (800A), MSXM 1000 (800A) fixed version

REAR TERMINALS RC

PANEL CUTOUT

Panel cutout dimensions shown give an allowance of 1.0 mm around the handle escutcheon.

ELECTRONIC MCCB AND SWITCH DISCONNECTORS
 MSXE 1000 (800A), MSXM 1000 (800A) fixed version

FRONT TERMINALS WITH MOTOR OPERATOR

REAR TERMINALS WITH MOTOR OPERATOR
(hatching area)
(bottom view)

ELECTRONIC MCCB AND SWITCH DISCONNECTORS

MSXE 1000 (800A), MSXM 1000 (800A) fixed version

FRONT TERMINALS WITH EXTENSION BARS

PANEL CUTOUT

Panel cutout dimensions shown give an allowance of 1.5 mm around motor operator.

ELECTRONIC MCCB AND SWITCH DISCONNECTORS

MSXE 1000 (800A), MSXM 1000 (800A) plug-in version
DIMENSIONS

TERMINATION OF BUSBAR

Preperation of conductor

E: Arrangement Standard Line L: Handle Frame Centre Line

ELECTRONIC MCCB AND SWITCH DISCONNECTORS

MSXE 1000 (800A), MSXM 1000 (800A) plug-in version

Mounting base
(rear view)

Detail of connecting part Oriented for rear access

Drilling plan (front view)

Terminal bars should be connected
alternately on adjacent poles.

ELECTRONIC MCCB AND SWITCH DISCONNECTORS

MSXE 1000 (800A), MSXM 1000 (800A) plug-in version

MOUNTING ON THE BACK OF FIXING PLATE

(rear view)

Drilling plan
(front view)

Detail of connecting part

Oriented for rear access

ELECTRONIC MCCB AND SWITCH DISCONNECTORS

MSXE 1000 (800A), MSXM 1000 (800A) plug-in version

MOUNTING ON THE FRONT OF FIXING PLATE

ELECTRONIC MCCB AND SWITCH DISCONNECTORS
 MSXE 1000, MSXM 1000 (1000A)

FRONT EXTENDED TERMINALS FB

E: Arrangement Standard Line \quad Lt: Handle Frame Centre Line

ELECTRONIC MCCB AND SWITCH DISCONNECTORS

MSXE 1000, MSXM 1000 (1000A)

REAR TERMINALS RC

PANEL CUTOUT

Panel cutout dimensions shown give an allowance of 1.0 mm around the handle escutcheon.

DRILLIN PLAN

ELECTRONIC MCCB AND SWITCH DISCONNECTORS

MSXE 1000, MSXM 1000 (1000A)
FRONT TERMINALS WITH MOTOR OPERATOR

PANEL HINGE POSITION
(hatching area)
(bottom view)

ELECTRONIC MCCB AND SWITCH DISCONNECTORS

MSXE 1000, MSXM 1000 (1000A)

REAR TERMINALS WITH MOTOR OPERATOR

PANEL CUTOUT

Panel cutout dimensions shown give
an allowance of 1.5 mm around moto operator.

DRILLIN PLAN

ELECTRONIC MCCB AND SWITCH DISCONNECTORS

MSXE 1250, MSXM 1250
FRONT EXTENDED TERMINALS FB

E: Arrangement Standard Line L: Handle Frame Centre Line

ELECTRONIC MCCB AND SWITCH DISCONNECTORS

MSXE 1250, MSXM 1250

REAR TERMINALS RC

PANEL CUTOUT

Panel cutout dimensions shown give an allowance of 1.5 mm around the handle escutcheon.

DRILLIN PLAN

ELECTRONIC MCCB AND SWITCH DISCONNECTORS
 MSXE 1250, MSXM 1250

FRONT TERMINALS WITH MOTOR OPERATOR

ELECTRONIC MCCB AND SWITCH DISCONNECTORS

MSXE 1250, MSXM 1250

REAR TERMINALS WITH MOTOR OPERATOR

PANEL CUTOUT

Panel cutout dimensions shown give an allowance of 1.0 mm around motor operator.

DRILLIN PLAN

ELECTRONIC MCCB AND SWITCH DISCONNECTORS

MSXE 1600, MSXM 1600
FRONT EXTENDED TERMINALS FB

E: Arrangement Standard Line L: Handle Frame Centre Line

ELECTRONIC MCCB AND SWITCH DISCONNECTORS

MSXE 1600, MSXM 1600

REAR TERMINALS RC

PANEL CUTOUT

Panel cutout dimensions shown give an allowance of 1.5 mm around the handle escutcheon.

DRILLIN PLAN
(front view)

ELECTRONIC MCCB AND SWITCH DISCONNECTORS

MSXE 1600, MSXM 1600
FRONT TERMINALS WITH MOTOR OPERATOR

ELECTRONIC MCCB AND SWITCH DISCONNECTORS
 MSXE 1600, MSXM 1600

REAR TERMINALS WITH MOTOR OPERATOR

PANEL CUTOUT

Panel cutout dimensions shown give an allowance of 1.0 mm around motor operator.

DRILLIN PLAN
(front view)

DIRECT ROTARY HANDLES

MSX/M 160c - MSX/M 250c

Applicable breaker types

MSX 160c, MSXM 160c
MSX 250c, MSXM 250c

Outline dimensions

DIRECT ROTARY HANDLES

MSX/D 125 -MSX/D/E 160 - MSX/D/E 250

Applicable MCCB	A
MSX 125, MSX 160, MSX 250	106 ± 2
MSXD 125, MSXD 160, MSXD 250	
MSXE 160, MSXE 250	141 ± 2

DIRECT ROTARY HANDLES

MSX/E/M 400 - MSXE/M 630

Applicable MCCB	A	B
MSXE 630, MSXM 630	150 ± 2	97
MSX 400, MSXE 400, MSXM 400		

Positional relationship between the hinge and handle as viewed from the load side of the breaker

MSXE/M 1000

Applicable MCCB	A
MSXE 1000, MSXM $\mathbf{1 0 0 0}$	150 ± 2

 from the load side of the breaker.

ASL: Arrangement Standard Line ©: Arrangement Standard Line L: Handle Frame Centre Line

DIRECT ROTARY HANDLES

MSXE/M 1250 - MSXE/M 1600

Applicable MCCB	A	Mounting screw*
MSXE 1250, MSXM 1250	197 ± 2	M6 x 110, 4pcs
MSXE 1600, MSXM 1600	217 ± 2	

*Secured to breaker cover

TRANSMITTED ROTARY HANDLES

MSX/M 160c		
Applicable breaker types	$\mathbf{A} \pm 2$	$\mathbf{B} \pm \mathbf{0 . 5}$
M5X 160c, M5XM 160c	175 min.	80
	453 max.	358

Note
"Min (minimum)" means the minimum possible distance from the panel surface to the breaker mounting surface, which can be formed by cutting the square shaft.
"Max (maximum)" means the maximum distance of the same section, which is formed with no cutting of the square shaft.
A: Distance from the panel surface to the breaker mounting surface
B: Length of the square shaft used

Outline dimensions

Panel cutout dimensions

- Positions of the hinge and handle as seen from the load side of the breaker. Ensure that the hinge is positioned in the $\square / \square \backslash$ area.

MSX/M 250c

Applicable breaker types	$\mathbf{A} \pm \mathbf{2}$	$\mathbf{B} \pm \mathbf{0 . 5}$
MSX 160c, MSXM 160c	175 min.	80
	453 max.	358

Note

"Min (minimum)" means the minimum possible distance from the panel surface to the breaker mounting surface, which can be formed by cutting the square shaft.
"Max (maximum)" means the maximum distance of the same section, which is formed with no cutting of the square shaft.
A: Distance from the panel surface to the breaker mounting surface
B: Length of the square shaft used

Panel cutout dimensions

- Positions of the hinge and handle as seen from the load side of the breaker. Ensure that the hinge is positioned in the $\square / \square \backslash$ area.

E: Handle Centre Line L: Handle Frame Centre Line

TRANSMITTED ROTARY HANDLES

MSX/D 125 -MSX/D/E 160 - MSX/D/E 250

Applicable MCCB	A $^{* 1}$	B	C
MSX 125, MSX 160, MSX 250	175 min	80	144
MSXD 125, MSXD 160, MSXD 250	453 max.	358	144
MSXE 160, MSXE 250	210 min	80	144
	488 max	358	179

Min means the length for A . by cutting the shaft.
${ }^{*}:$: Max. means the maximum length fot A without cutting the shaft.
The shaft can be cut to the required length.

A: Distance from the panel surface to the breaker mounting surface B: Length of the square shaft used

Positional relationship between the hinge and handle as viewed from the load side of the breaker. The hinge must be inside the hatched area.

TRANSMITTED ROTARY HANDLES

MSX/E/M 400 - MSXE/M 630

Applicable MCCB	A $^{* 1}$	B	C
MSX 400, MSXE 400, MSXM 400	220 min.	86	188.5
MSXE 630, MSXM 630	456 max.	322	188.5

${ }^{*}$: Min. means the minimum length for A by cutting the shaft.
Max. means the maximum length fot A without cutting the shaft.
Max. means the maximum length fot A without cutting the shaft.

A: Distance from the panel surface to the breaker mounting surface

B: Length of the square shaft used

E: Handle Centre Line

TRANSMITTED ROTARY HANDLES

MSXE/M 1000

Applicable MCCB	A*1 $^{* 1}$	B	C
MSXE 1000, MSXM 1000	220 min.	86	188.5
	456 max.	322	188.5

${ }^{*}$: Min. means the minimum length for A by cutting the shaft.
Max. means the maximum length fot A without cutting the shaft.
The shaft can be cut to the required length.

A: Distance from the panel surface to the breaker mounting surface

B: Length of the square shaft used

TRANSMITTED ROTARY HANDLES

MSXE/M 1250 - MSXE/M 1600

Applicable MCCB	A $^{* 1}$	B	C
MSXE 1250, MSXM 1250	276.5 min.	86	245
	512.5 max.	322	245
MSXE 1600, MSXM 1600	296.5 min.	86	265
	532.5 max.	322	265

*1: Min. means the minimum length for A by cutting the shaft
Max. means the maximum length fot A without cutting the shaft.
The shaft can be cut to the required length.

A: Distance from the panel surface to the breaker mounting surface B: Length of the square shaft used

Positional relationship between the hinge and handle as viewed from the load side of the breaker. The hinge must be inside the hatched area.

Plug-in mounted version
This version can be mounted simply by being plugged in the breaker body.

To be stated when ordering.

- Please state the arder codes in the table below. Covers should be ordered individually far Line and Load side.

Types and dimensions of terminal covers, units in mm
for front-connected breakers with extended and spread terminals

Types of breakers	Terminal cover	A		B		C		D	
	Type	3P	4P	3P	4P	3P	4P	3P	4P
MSX 160c, MSXM 160c	Front terminals FC and extended FB	75	100	50	50	61	61	60.3	60.3
	Front terminals spread FB	105	140	60	60	61	61	60.3	60.3
MSX 250c, MSXM 250c	Front terminals FC and extended FB	105	140	55	55	59	59	57.5	57.5
	Front terminals spread FB	147.5	196	55	55	59	59	57.5	57.5

TERMINAL COVERS

To be stated when ordering

- Please state "with CR" if ordering along with the breaker.
- Covers should be ordered individually for Line and Load side.

Types and dimensions of terminal covers, units in mm

for rear-connected

Types of breakers	A		B		B'	C		D	
	3P	4P	3P	4P		3P	4P	3P	4P
MSX 160c, MSXM 160c	75	100	5.5	5	-	61	61	60.3	60.3
MSX 250c, MSXM 250c	105	140	2.3	2.3	5.3	58.6	58.6	57.1	57.1

for front-connected breakers with terminals for cables (In up to 100A)

Types of breakers	A		B	C	D
	3P	4P			
MSX 160c, MSXM 160c	75	100	55	61	60.3

TERMINAL COVERS

Terminal covers for front terminals FC, extended and spread terminals FB

Plug-in mounted version

This version can be mounted simply by being plugged in the breaker body.

Screw-mounted version

The terminal covers for 800A are mounted to the breakers using tapping screws.

The terminal cover for 1250 AF is mounted using insert nuts on the breaker cover using screws.
The insert nuts do not come standard with the breaker.

Please be sure to state "with terminal cover (CF)" when ordering the breaker.

TERMINAL COVERS

Terminal covers for front terminals for cables FW

MCCB type	Connection	A		B		$\begin{gathered} \mathbf{B}^{\prime} \\ \hline \mathbf{3 P - 4 P} \end{gathered}$	C		D		Mounting version	
		3P	4P	3P	4P		3P	4P	3P	4P	Plug-in mounted	Screw mounted
MSX 125	Front conn.	90	120	40	40	-	48	48	46	46	0	-
MSXD 125	Cable clamp	90	120	2.5	2.5	6	61	61	59.5	59.5	0	-
MSX 160, MSX 250 MSXD 160, MSXD 250	Front conn. (1)	105	140	55	55	-	54	54	52	52	0	-
MSXE 160, MSXE 250	Front conn. (1)	105	140	55	55	-	89	89	87	87	0	-
MSX 400, MSXE 400, MSXM 400 MSXE 630, MSXM 630	Front conn. Wide type	140	185	85	85	-	97	97	94.5	94.5	0	-
	Front conn. Straight type	180	240	110	114	-	97	98	96	98	0	-
MSXE 1000, MSXM 1000	Front conn.	215	285	130	130	-	99.5	99.5	9	9	-	0
MSXE 1250, MSXM 1250	Front conn.	215	285	130	130	-	115	115	9	9	-	0

TERMINAL COVERS

Terminal covers for rear terminals RC and plug-in MCCBs

Plug-in mounted version

This version can be mounted simply by being plugged in the breaker body.

Screw-mounted version

The terminal covers for 630 to 1000AF are mounted to the breakers using tapping screws.

MCCB type	A		B		B'	C		D		Mounting version	
	3P	4P	3P	4P		3P	4P	3P	4P	Plug-in mounted	Screw mounted
$\begin{aligned} & \text { MSX } 125 \\ & \text { MSXD } 125 \end{aligned}$	90	120	2	2	6	41.5	41.5	40.5	40.5	0	-
MSX 160, MSX 250 MSXD 160, MSXD 250	105	140	2	2	6	42.5	42.5	39.5	39.5	0	-
MSXE 160, MSXE 250	105	140	2	2	6	77.5	77.5	39.5	39.5	0	-
MSX 400, MSXE 400, MSXM 400 MSXE 630, MSXM 630	140	185	3	3	5	97	97	93	93	0	-
MSXE 1000, MSXM 1000	206	280	14	18	-	101	99	100.5	98	-	0

INTERPOLE BARRIERS

Interpole barriers serve to enhance electrical insulation between pole and prevent short-circuit due to electrically conductive foreign matter. Combined use of interpole barriers and terminal covers (standard type) is not possible.

Dimension (mm)

Types of breakers	A	B
MSX 160c, MSXM 160c	50	55
MSX 250c, MSXM 250c	101	53

Note: Line side interpole barriers are supplied as standard for all front connected breakres.

DIMENSION

LINK MECHANICAL INTERLOCIKS

MSX 125

MCCB Type	A
MSX 125	81.7

The use of rotary handles or motor operator is recommended in the case of link mechanical interlock

LINK MECHANICAL INTERLOCIKS

MSX/M 250c - MSX/E 160 - MSX/E 250

MCCB Type	A
MSX 250c, MSXM 250c MSX 160, MSX 250	81.7
MSXE 160, MSXE 250	116.7

The use of rotary handles or motor operator is recommended in the case of link mechanical interlock.

ASL: Arrangement Standard Line E: Handle Centre Line L: Handle Frame Centre Line

LINK MECHANICAL INTERLOCKS WITH MOTOR OPERATOR

MSX/E/M 400 - MSXE/M 630

MCCB Type	A
MSX 400, MSXE 400, MSXM 400 MSXE 630, MSXM 630	213

The use of rotary handles or motor operator is recommended in the case of link mechanical interlock.

LINK MECHANICAL INTERLOCIKS WITH DIRECT ROTARY HANDLE

MSX/E/M 400 - MSXE/M 630

MCCB Type	A	B
MSX 400, MSXE 400, MSXM 400 MSXE 630, MSXM 630	200	150 ± 2

The use of rotary handles or motor operator is recommended in the case of link mechanical interlock.

ASL: Arrangement Standard Line E: Handle Centre Line L: Handle Frame Centre Line

LINK MECHANICAL INTERLOCIKS WITH MOTOR OPERATOR

MSXE/M 1000

MCCB Type	A
MSXE 1000, MSXM 1000	213

The use of rotary handles or motor operator is recommended in the case of link mechanical interlock.

LINK MECHANICAL INTERLOCIKS WITH DIRECT ROTARY HANDLE

MSXE/M 1000

MCCB Type	A	B
MSXE 1000, M5XM 1000	200	150

The use of rotary handles or motor operator is recommended in the case of link mechanical interlock.

ASL: Arrangement Standard Line E: Handle Centre Line L: Handle Frame Centre Line

WIRE MECHANICAL INTERLOCKS

MSX 125

MCCB Type	A
M5X 125	81.7

Cable length	B	C
$1 \mathbf{m}$	$130 \min -480 \max$	$160 \min -480 \max$

The use of rotary handles or motor operator is recommended in the case of link mechanical interlock.

WIRE MECHANICAL INTERLOCKS

MSX/M 250c - MSX/E 160 - MSX/E 250

MCCB Type	A	B			
MSX 250c, MSXM 250 c MSX 160, MSX 250	81.7	64	Cable length	C	D
MSXE 160, MSXE 250	116.7	99	1m	155min - 480max	180min - 480max

[^1]
ASL: Arrangement Standard Line E: Asse di simmetria orizzontale L: Asse di manovra

WIRE MECHANICAL INTERLOCIKS WITH MOTOR OPERATOR

MSX/E/M 400 - MSXE/M 630

Mounting hol

MCCB Type	A	B
MSX 400, MSXE 400, MSXM 400	213	105.4
MSXE 630, MSXM 630		

Cable length	C	D
$\mathbf{1 m}$	$180 \min -480 \max$	$225 \min -480 \max$

[^2]
WIRE MECHANICAL INTERLOCIKS WITH DIRECT ROTARY HANDLE

MSX/E/M 400 - MSXE/M 630

The use of rotary handles or motor operator is recommended in the case of link mechanical interlock.

ASL: Arrangement Standard Line E: Asse di simmetria orizzontale L: Asse di manovra

WIRE MECHANICAL INTERLOCKS WITH MOTOR OPERATOR

MSXE/M 1000

Mechanical Interlock
cable ø5

MCCB Type	A			Cable length	C	D
MSXE 1000, MSXM 1000	213		$1 m$	$250 \mathrm{~min}-430 \mathrm{max}$	$320 \mathrm{~min}-430 \mathrm{max}$	

The use of rotary handles or motor operator is recommended in the case of link mechanical interlock.

WIRE MECHANICAL INTERLOCIKS WITH DIRECT ROTARY HANDLE

MSXE/M 1000

MCCB Type	A	B	Cable length	C	D
MSXE 1000, MSXM 1000	200	150 ± 2	1m	250min - 430max	$320 \min -430 \max$

The use of rotary handles or motor operator is recommended in the case of link mechanical interlock.

ASL: Arrangement Standard Line E: Asse di simmetria orizzontale L: Asse di manovra

WIRE MECHANICAL INTERLOCKS

MSXE/M 1250 - MSXE/M 1600

Drilling plan (front view)

Vertical installation

Horizontal installation $\quad 13$

MCCB Type	A	Cable length	P	L
MSXE 1250, MSXM 1250	120	1m	650-500-350	450-500-530 ± 30
MSXE 1600, MSXM 1600	140			

[^0]: For technical information contact the Technical Assistance Service or visit gewiss.com

[^1]: The use of rotary handles or motor operator is recommended in the case of link mechanical interlock.

[^2]: The use of rotary handles or motor operator is recommended in the case of link mechanical interlock.

