

RCBO - MDC

Technical data

	T'	YPE			MD	C 45	MD	C 60	MDO	100	MDC 100 MA	
					EEH							
Standards						61009-1 61009-2-1	IEC EN	61009-1 61009-2-1 423 (type F)	IEC EN	61009-1 61009-2-1 423 (type F)	IEC EN 61009-1 IEC EN 61009-2-1	
Rated current (In)				(A)	6	-32	6	-32		-32	6-32	
Utilization category						A		Α		A	А	
Rated operational v				(V AC)		1 - 240/415		- 240/415		- 240	110	
Insulation voltage (I Rated frequency	ווט			(V) (Hz)		00 0/60		00		00 0/60	500 50/60	
Rated impulse with	stand voltage (Uimr			(kV)		4		4		4	4	
Overvoltage categor		·1		(11.07		· III		· III	III		III	
Number of poles					1+N,2	3, 4	1+N,2	3, 4	2, 3		2	
Energy limiting class	s (B and C)				3	1	3	1		3	3	
Breaking capacity												
	IEC/EN 61009-1	lcn		(A)		500		000		000	10000	
		lcs		(A)		Icn		lcn		'5 lcn	0.75 lcn	
Alternating current	IEC/EN 60947-2	lcu	230/240 V	(kA) (kA)	- 6	4,5	10	- 6	15		15	
	lcs		(kA)		, 4,5 % Icu	75% lcu 100% lcu			- % Icu	50% lcu		
Rated residual opera	idual operating current (I∆n)			(mA)	100	70 ICu	75 % ICU 100 % ICU		30	70 ICu	30 % icu	
Tales resident open	idual operating current (IΔn) AC		(4)		30		30		30	30		
	AC				100	300		300				-
					30	30			30	30		
Туре			Α		-		-		1	00	-	
					300		300			100	-	
			A[IR]		-		30		30		-	
			A[S]		-		300			- 30	-	
Level of immunity (8/20 µs)		<u> </u>	(A)	250		250 (for AC and A types) 3000 (for A[IR], A[S], F types)		250 (for AC	and A types) ype A[IR], F)	250	
Residual making an	d breaking capacity	(IAm)		(A)	4	500		500		500	4500	
Voltage independen	t working:				Υ	'ES	Υ	ES	Υ	'ES	YES	
Wiring		cable section (mm²) ⁽¹⁾	rigid flexible			6 - ≤ 1x16+2x10 6 - ≤ 1x16+2x10		6 - ≤ 1x16+2x10 6 - ≤ 1x16+2x10		6 - ≤ 1x16+2x10 6 - ≤ 1x16+2x10	≤ 1x35 - ≤ 2x16 - ≤ 1x16+2x10 ≤ 1x35 - ≤ 2x16 - ≤ 1x16+2x10	
Electrical endurance						000		000		000	10000	
Mechanical enduran						0000		000		1000	20000	
Max. no. of usable n Upline/Downline po						2 'ES		ES ES		2 ′ES	2 YES	
Status displayed	мет зиррту					ES ES		ES		ES /ES	YES	
Mounting position:						any		iny		any	any	
Rated tightening to	rque:			(Nm)		2		2		2	2	
Screwdriver suggest	ed				F	722	Р	72	F	PZ2	PZ2	
Degree of protection	1	terminals				20		20		20	IP20	
		front				240		240		2	IP40	
Pollution degree: Tropicalization						2 RH 95%		2 RH 95%		2 RH 95%	2 55°C - RH 95%	
Reference temperat	ure			(°C)		30		30 RH 95%		30	30 C - RH 95%	
Operating temperate				(°C)		+60 (2)	-	+60 ⁽²⁾		+60 (2)	-25 +60 ⁽²⁾	
Stocking temperatu	ing temperature ((°C)	<u> </u>) +70	-40) +70	-40) +70	-40 +70		
	ole connection (cable+fork busbar)				stream terminals)		stream terminals)		stream terminals)	yes (only downstream terminals)		
Weight per pole				(g)		20		20		20	120	
Curve	L. L. L. V. V			,		C	С	В	С	В	С	
Rated currents avail	lable (in)			(A)		6	6	6	6	6	6	
						10 13	10	10	10	10	10 13	
							-		16	16	16	
					16 20		16 16 20 20		16 16 20 20		20	
						25	25	25	25	25	25	
	tion is 1mm²					32	32	32	32	32	32	

 $^{^{(2)}}$ With temperatures greater than 30°C, derating $\,$ of In rated current is expected $\,$

ADD-ON RCD - BD - BDHP

Technical data

ТҮРЕ			В	D	BDHP	BDHP ADJUSTABLE
			4 3 4 1	•		
Standards				9-1 Annex G 1009-2-1	IEC EN 61009-1 Annex G IEC EN 61009-2-1	EN 60947-2 app. B
Rated current (In)		(A)	≤ 25	≤ 63	≤ 125	≤ 125
Rated operational voltage (Ue)		(V AC)	230,	/400	230/400	400
Insulation voltage (Ui)		(V)	50	00	500	500
Rated frequency		(Hz)	50,	/60	50/60	50
Rated impulse withstand voltage (Uimp)		(kV)	4	1	4	4
Overvoltage category:			I	II	III	III
Number of poles			2,:	3,4	2,3,4	4
Rated residual operating current (IΔn)		(mA)				
			10 ⁽¹⁾	-	-	-
			30	30	30	-
	AC		300	300	300	-
			500	500	-	-
			30	30	30	-
Туре	Α		300	300	300	-
			500	500	-	-
	A[IR]		-	30	-	-
			-	300	300	-
	A[S]		-	1000	1000	-
	A[Adj.]		-	-	-	300 - 500 - 1000 - 3000
Adjustable tripping time (t)		(ms)		-	-	0 - 60 - 150
Level of immunity (8/20 μs)		(A)	250 (for AC 3000 (for A[IR]	and A types) and A[S] types)	250 (for AC and A types) 3000 (for A[S] type)	3000
Residual making and breaking capacity (IΔm)		(A)	lcn circui	t breaker	Icn circuit breaker	Icn circuit breaker
Voltage independent working:			YI	ES	YES	YES
Wiring cable	rigid		≤ 1x35 - ≤ 2x16	5 - ≤ 1x16+2x10	≤ 1x70 - ≤ 2x25 - ≤ 2x25+1x10	≤ 1x70 - ≤ 2x25 - ≤ 2x25+1x10
section (m	m²) flexible		≤ 1x35 - ≤ 2x16	5 - ≤ 1x16+2x10	≤ 1x50 - ≤ 2x25 - ≤ 3x16	≤ 1x50 - ≤ 2x25 - ≤ 3x16
Upline/Downline power supply			YI	S	YES	YES
Mounting position:			aı	ту	any	any
Rated tightening torque:		(Nm)	:	2	3.5 / 3 (terminal)	3.5 / 3 (terminal)
Screwdriver suggested			P	72	PZ2	PZ2
Degree of protection terminals			IP	20	IP20	IP20
front			IP.	40	IP40	IP40
Pollution degree:				2	2	2
Tropicalization			55°C - F		55°C - RH 95%	55°C - RH 95%
Reference temperature		(°C)	3	0	30	30
Operating temperature		(°C)	-25	+40	-25 +40	-25 +40
Stocking temperature		(°C)	(°C) -40 +70		-40 +70	-40 +70
Weight per pole		(g)	10	00	200	200

[™] Only for 2P versions

RCCB - IDP

Technical data

TYPE		IDP NA	IDP	IDP 4P (3M)	SD K	IDP 125A
				Read of the second		
Standard		IEC EN 61008-1 IEC EN 61008-2-1	IEC EN 61008-1 IEC EN 61008-2-1 IEC 62955 (type A[EV]) IEC EN 62423 (type F and B)	IEC EN 61008-1 IEC EN 61008-2-1	IEC EN 61008-1 IEC EN 61008-2-1	IEC EN 61008-1 IEC EN 61008-2-1
Rated current (In)	(A)	25-40-63	25-80 230/400 - 240/415	25-40	80-100	125
Rated operational voltage (Ue)	(V a.c.)	230/400 - 240/415	110 (for MA versions)	400	400 - 415	400
nsulation voltage (Ui)	(V)	500	500	500	400	400
Rated impulse withstand voltage (Uimp) Overvoltage category	kV	4 III	4 III	4 III	4 III	4 III
Rated frequency	(Hz)	50	50/60	50/60	50	50
Poles		2 (Up to 40A)	2, 4	4	4	4
Number of modules		4 (Up to 63A) 2 (2P) 4 (4P)	2 (2P) 4 (4P) 4 (2P/4P type A[EV] and B)	3	4	4
Rated residual operating current (I∆n)	(mA)					
		-	10 (1)	- 20	-	-
A		30	30 100	30 100	30	30
	-	300	300	300	300	300
_		-	500 10 ⁽¹⁾	500	-	-
		30	30	30	30	30
'ype A		-	100	100	-	-
		300	300 500	300 500	300	300 500
ĪR	- Impulse	-	30	- 500	30	- 500
re	sistant	-	300	-	-	-
	/ - electric vehicles ⁽²⁾	-	30 300	-	300	300
S	- Selective		500	-	-	-
<u>F</u>		-	30	-	-	-
В		<u>-</u>	30 300	-	-	-
evel of immunity (8/20μs)	(A)	250	250 (Type AC - A) 3000 (type A[IR], A[S], A[EV], F and B)	250	250 (Type AC - A) 3000 (Type A[IR] - A[S])	200 (type AC and A) 3000 (type A[S])
Residual making and breaking capacity (Idm) Making and breaking capacity (Im)	(A) (A)	10 x In (630A min) 10 x In (630A min)	10 x In (630A min) 10 x In (630A min)	630 630	800 (80A) - 1000 (100A) 800 (80A) - 1000 (100A)	1250 1250
oltage independent working	(A)	ves	Ves	yes	Ves	yes
Viring Cable section _r	igid	≤ 1x35 - ≤ 2x16 - ≤ 1x16+2x10	≤ 1x35 - ≤ 2x16 - ≤ 1x16+2x10	≤ 1x35 - ≤ 2x16 - ≤ 1x16+2x10	≤35	≤50
ilectrical endurance (mm²) (mm²) (mm²)	lexible	≤1x35 - ≤ 2x16 - ≤ 1x16+2x10 5000	≤ 1x35 - ≤ 2x16 - ≤ 1x16+2x10 10000	≤1x25 - ≤1x16+1x10 - ≤3x6 5000	≤35 4000	≤50 4000
Mechanical endurance		10000	20000	10000	10000	10000
lpstrem / Downstream supply		yes	yes	yes	yes	yes
Aounting position Rated tightening torque	(Nm)	any 2	any 3	any 2	any 2	any 2,5
crew type	(IAIII)	PZ2	PZ2	PZ2	PZ2	PZ2
Pollution degree		2	2	2 - IEC COCOE 2.11di	2 +h IEC (1000 1	2
ire resistance P degree (inside the distribution board)		IP40	IP40	: IEC 60695-2-11 according wi IP40	IP40	IP40
ropicalization		55°C - UR 95%	55°C - UR 95%	55°C - UR 95%	55°C - UR 95%	55°C - UR 95%
nstallation altitude	(m)	≤ 2000	≤ 2000	≤ 2000	≤ 2000	≤ 2000
lperating temperature (average daily temperature ≤35: itorage temperature	°C) (°C)	-5 ÷ +40 -40 ÷ +70	-25 ÷ +60 ⁽⁴⁾ -40 ÷ +70	-25 ÷ +40 -40 ÷ +70	-25 ÷ +40 -35 ÷ +60	-25 ÷ +40 -35 ÷ +60
Oouble connection (cable + fork busbar)	(0)	no (for 2P) yes	yes	yes (Upstream and downstream)	yes	yes
Parallandar Sala III I		(only downstream for 4P)	· .			•
Signalization of the relay tripping		no	yes 175 (2P), 320 (4P)	no	no	no
Neight of device	(g)	160 (2P), 300 (4P)	275 (2P type A[EV] and B) 340 (4P type A[EV] and B)	280	350	350

⁽a) Minimum cable section is 1.5mm²
(b) With temperatures greater than 40°C, derating of In rated current is expected

			RATED C	ONDITIONA	AL RESIDUA	L SHORT-C	RCUIT CUR	RENT IΔc (k	(A)			
Rated	urrent In	25A / 4	IOA (NA)		25A / 40A		63A(NA)	63A	80	DA .	100A	125A
P	oles	2P	4P	2P	4P	4P (3M)	2P/4P	2P/4P	2P	4P	4P	4P
	gG 63A	6	6	10	10	6	6	10*	-	-	-	-
F	gG 80A		-	-	-	-	-	10	6	10	-	-
Fuse	gG 100		-		-	-	-	-	-	-	10	-
	gG 125		-	-	-	-	-	-	-	-	-	10
	MTC 45			4,5			4	.5		-	-	-
	MTC 60			6				5		-	-	-
	MTC 100			10			1	0		-	-	-
	MT 45			4,5			4	.5		-	-	-
MCB	MT 60			6				5		-	-	-
	MT 100			10			1	0		-	-	-
	MT 250			10			1	0		-	-	-
	MTHP 160			-			1	0	1	0	10	10
	MTHP 250			10			1	0		-	-	-

^{*} Only A[EV], F and B type RCCBs

⁽²⁾ Type A[EV] trips in the event of a fault current with smooth residual direct current equal to or above 6mA

For technical information contact the Technical Assistance Service or visit gewiss.com

MDC 45 - 60 - 100 compact residual current circuit breakers with overcurrent protection

Technical characteristics

For circuit overcurrent protection and the residual current protection of devices and services, there are the MDC 45, MDC 60 and MDC 100 compact residual current circuit breakers with overcurrent protection.

The MDC compact miniature circuit breakers with residual current release have a thermomagnetic part with the same characteristics as the MTC circuit breakers. The residual current release - assembled in the factory inside the same modular shell - is available in AC, A, A[IR] impulse resistant, A[S] selective and F versions with a rated residual current of 30, 100 and 300 mA.

Some advice about selection and installation

Due to their design, RCCBs are sensitive devices and therefore more exposed to phenomena that can cause an untimely trip (the RCCB trips without a real fault). The untimely trips are usually caused by atmospheric perturbations, such as electric discharges generated by lightening, operations performed on the electric distribution network, disturbances generated by industrial equipments and the presence of electronic filters in the electric circuit (also inside of common household appliances) that create permanent leakage currents towards earth.

The problems caused by an untimely trip of a residual current circuit breaker can range, in a domestic environment, from a limited inconvenience due to having to reset the RCCB, to more considerable economic damage due to the loss of the content of a freezer.

In the industrial and tertiary sectors, where the systems are extended and the service continuity must be more guaranteed, the amount of damage is certainly larger; it is sufficient to think of application areas such as photovoltaics, telecommunications, Electronic Data Processing, public lighting or monitoring systems in order to understand how the continuity of electrical services plays a fundamental role for economic return on investment, productivity and public safety.

A possible measure that can be taken to prevent the inappropriate tripping of the circuit breakers would be to install GEWISS **reinforced immunity RCCBs**, which are identified with the letters **IR** and characterised by greater resistance against the causes of the untimely trips, in comparison to standard versions. More specifically, the **IR RCCBs** are able to:

- not trip in the case of atmospheric as well as operational overvoltages because the level of immunity against the impulsive residual current with normalised form 8/20 µs reaches the value of 3000A (for standard versions, the peak values arrives up to 250A);
- not trip in the case of temporary earth leakages that occur when turning on electronic devices equipped with filters present in the power supplies of the most common equipments, such as PCs, decoders, variable speed electronic household appliances (air conditioners, washing machines, etc.), power supplies for lamps and dimmers.

In addition to the characteristics of type IR, **type F** guarantees also protection against indirect contacts due to variable-frequency earth faults which are generated in the presence of a single-phase frequency converter, or inverter, i.e. a device used in domestic and industrial appliances, such as washing machines, vacuum cleaners, dishwashers, ventilation systems, pumps, etc ... to regulate the speed of an electric motor, acting on the voltage and frequency of the power supply. Inverter technology is increasingly widespread in modern equipment because it allows to reduce energy consumption by improving the performance of electric motors.

Unlike the IR type, the **selective RCCB** has a delayed tripping action that cannot be adjusted because it is set according to the Standard CEI EN 61008 and 61009 that supply the table shown hereunder where it is clear the relationship between the fault current and the tripping time. Thanks to the S type RCCB, in case of a leakage fault, it is possible to minimise the parts of the system that are out of service by creating a vertical selectivity between the low sensitivity circuit breaker installed upstream and circuit breakers with higher sensitivity connected downstream (see the above illustration).

Ti	I [A]	IΔ [A]		Standard values of break tim	e (s) at a residual current (ΙΔ)	
Туре	In [A]	ΙΔ [Α]	1xl∆	2xl∆	5xl∆	500 A
General	Any value	Any value	0,3	0,15	0,04	0,04
S (Selective)	Any value	> 0,030	0,13-0,5	0,06-0,2	0,05-0,15	0,04-0,15

In detail, the S type provides total or chronometric selectivity between two devices installed in series. Thanks to the intrinsic delay of the S type, the tripping time of the instantaneous residual current circuit breaker located downstream is always less than the delay time of the S type, which guarantees the perfect coordination between the two devices.

MDC temperature performance

In (A)	Temperature														
In (A)	10°C	20°C	30°C	40°C	50°C	60°C									
6	7.2	6.6	6	5.7	5.3	5									
10	11.8	10.8	10	9.6	9.1	8.6									
13	14.8	14	13	12.2	11.2	10.3									
16	18.2	17.2	16	15.2	14.3	13.4									
20	22.8	21.4	20	19.5	18.9	18.4									
25	28.5	26.8	25	24	23	22									
32	36.5	34.2	32	30.8	29.5	28,2									

MDC power loss per pole

I= /A\	(5	1	0	13			6	2	0	2	!5	3	2
In (A)	Pole	N	Pole	N	Pole	N								
R (mΩ)	29.4	2.6	20.6	2.6	14.5	2.6	8.9	2.6	6.8	2.6	4.6	2.6	3.6	2.6
P (W)	1.06	0.09	2.06	0.26	2.45	0.44	2.28	0.67	2.72	1.04	2.88	2	3.67	2.66

BD - BDHP add-on for miniature circuit breaker

Add-on for MT (BD) and MTHP (BDHP) miniature circuit breakers, which can be coupled by the installer once only (in compliance with Standard CEI EN 61009, appendix G). AC, A, A[IR] impulse resistant, A[S] selective and adjustable types are available.

BD and BDHP power loss per pole

Dawey lane (M	w					Rat	ed curren	t of the a	ssociated	MT/MTH	IP miniat	ure circu	it breakeı	[A]				
Power loss (V	v)	1	2	3	4	6	10	13	16	20	25	32	40	50	63	80	100	125
nn - 11	2P	0.01	0.04	0.01	0.02	0.04	0.11	0.2	0.29	0.45	0.70	0.45	0.70	1.10	1.75	-	-	-
BD add-on	3P-4P	0.002	0.008	0.02	0.03	0.07	0.21	0.37	0.53	0.83	1.30	0.65	1.00	1.60	2.50	-	-	-
BDHP add-on	BDHP add-on		-	-	-	-	-	-	-	0.2	0.3	0.5	0.8	1.25	2	1.4	2.2	3.4

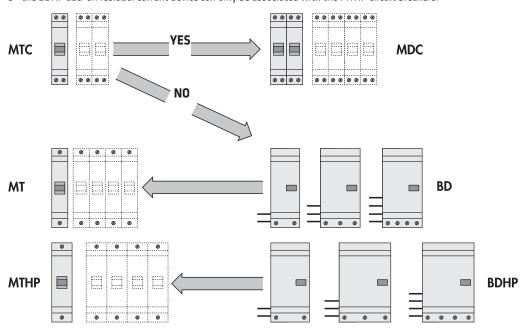
IDP residual current circuit breakers

Technical characteristics

Two-pole and four-pole residual current circuit breakers without built-in overcurrent releases - free release monobloc. AC type devices with instantaneous tripping are available (for residual sinusoidal alternating currents only), whereas A type residual current circuit breakers (suitable for residual one-way pulsating currents) are available in instantaneous, impulse-resistant and selective versions. The RCCBs type A[EV] for the protection of electric vehicle charging points, in addition to guaranteeing the characteristics of an A[IR] type, are suitable for protection against smooth residual direct current equal to or above 6 mA. The range also includes RCCBs type F with the same immunity level of IR type (Impulse Resistant) for the protection of variable-frequency earth faults. Moreover RCCBs type B with the same immunity level of IR type are available for the protection of electrical loads which can create earth fault currents with a direct component.

IDP temperature performance

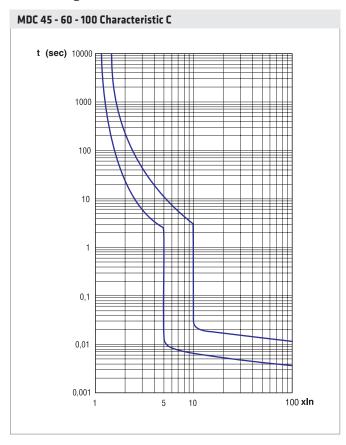
In (A)		Tempe	erature	
In (A)	30°C	40°C	50°C	60°C
25	25	25	22,5	20
40	40	40	36	32
63	63	63	56,7	50,4
80	80	80	-	-
100	100	100	-	-
125	125	125	-	-

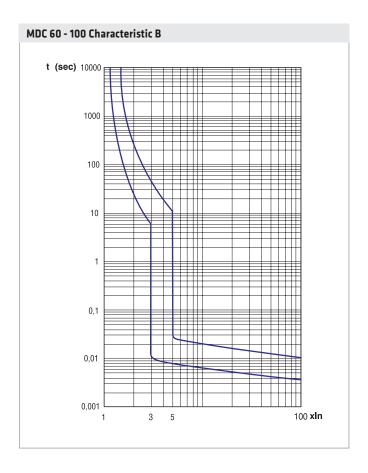

Power loss per device (W)

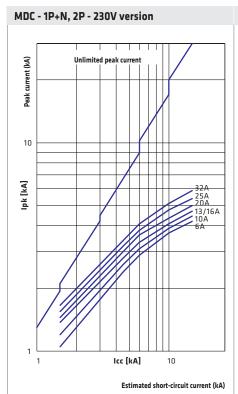
				Rated current In (A)											
Poles	No. of modules	25	40	63	80	100	125								
			Тур	e AC, A, A[IR], A[S] and F											
2	2 2 2,9 7,8 8,1 12,9														
	3	2,4	5,9	-	-	-	-								
4	4	4,4	11,7	12,2	21,6	23,4	36								
				Type A[EV], B											
2	4	1	2,6	6,2	-	-	-								
4	4	1,4	3,8	9,1	-	-	-								

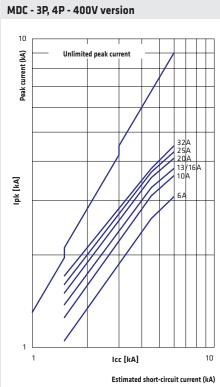
Composition rules for the modular residual current circuit breakers

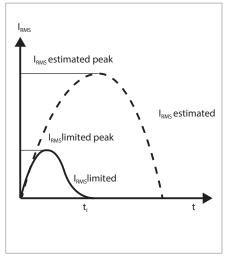
In order to obtain a residual current circuit breaker from a miniature circuit breaker, it is necessary to observe these rules:


- 1 there is no residual current device that can be associated with the MTC circuit breakers. There is the MDC compact monobloc residual current circuit breaker with overcurrent protection.
- 2 the BD add-on residual current device can only be associated with the MT circuit breakers.
- 3 the BDHP add-on residual current device can only be associated with the MTHP circuit breakers.

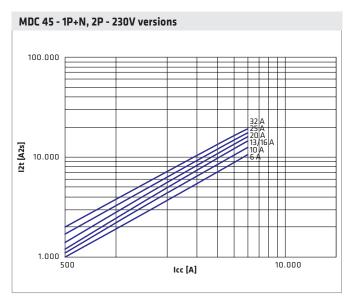


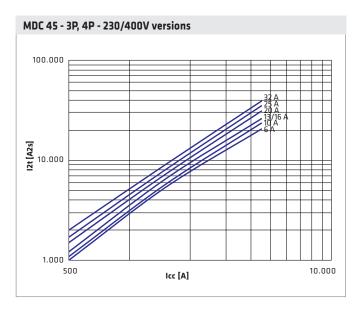

Tripping characteristics

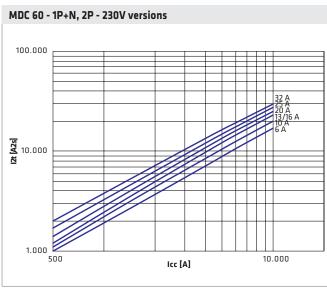

Termo-magnetic release

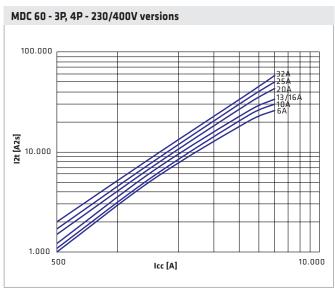


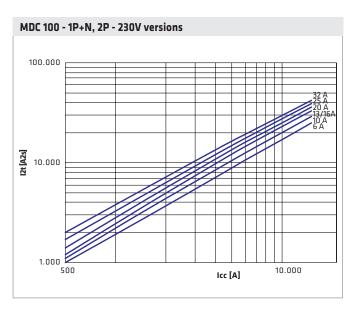
Peak current limitation characteristics

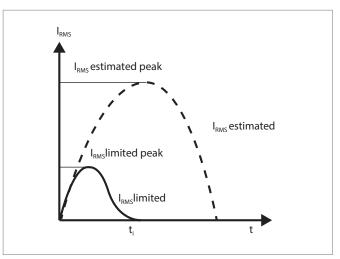


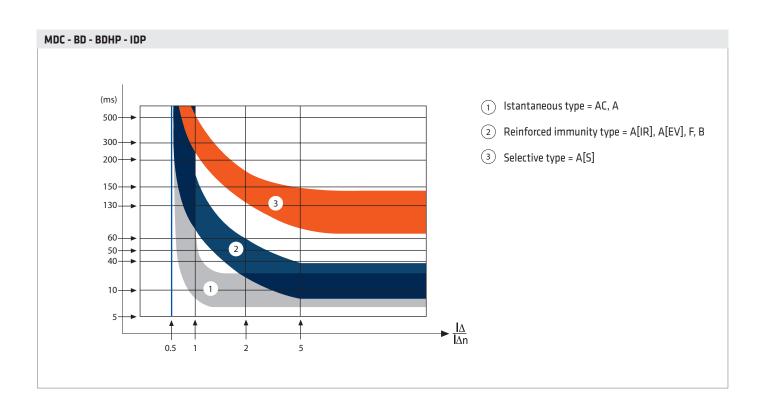



The following curves give the values of the peak current in relation to the estimated short-circuit current expressed in kA. Every curve refers to each rated current value of circuit breaker.

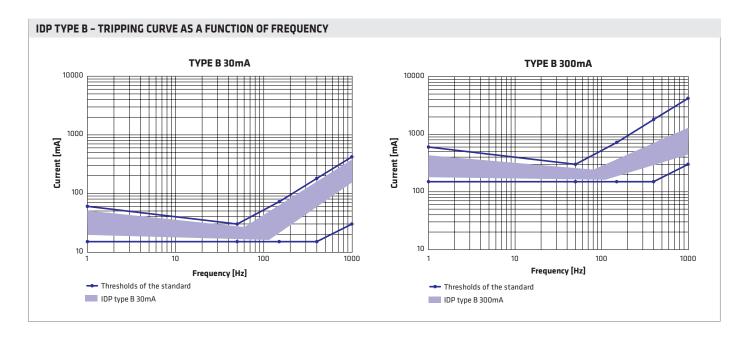



Specific let-through energy characteristics





The curves above give the values of the specific let-through energy in relation to the short-circuit current expressed in A. Every curve refers to each rated current value of circuit breaker.



Residual current circuit breaker tripping characteristics

RCD TYPE	AC	Α	F	В	
RESIDUAL FAULT CURRENT TYPE	• Sinusoidal alternating	• Sinusoidal alternating • Pulsanting	• Sinusoidal alternating • Pulsanting • Variable frequency	Alternating sinusoidal Pulsanting Variable frequency Smooth DC	Level of immunity (8/20µs)
I. INSTANTANEOUS First level of residual current protection against direct and indirect contacts	1	1			250A
2. REINFORCED IMMUNITY Prevention of untimely interventions due to: • overvoltages due to indirect lightning strikes (8/20 µs impulse current waveform up to 3000A) • overvoltages due to maneuvres on electrical network • overvoltages due to earth fault on three-phase system • permanent harmonics due electronic devices (immunity to currents with frequency higher than 50Hz) • starting current (immunity to the ring wave waveform)		✓	✓	√	3000A
3. SELECTIVE Second level of residual-current protection for total or chronometric selectivity with downstream RCDs		1			3000A
4. EV Suitable for protection against smooth residual direct current equal to or above 6 mA.		1			3000A

RESIDUAL CURRENT PROTECTION FOR ELECTRIC VEHICLE CHARGING POINTS

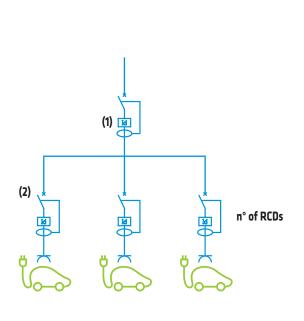
RCD protection for charging points

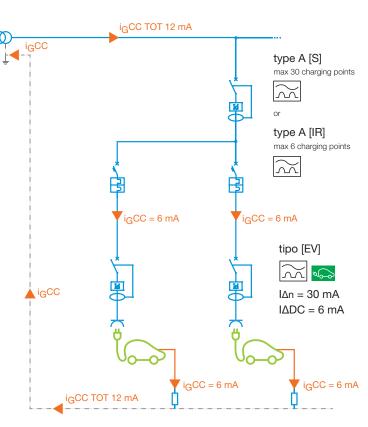
Each charging point with a type 2 socket must be protected individually with RCD with Idn not exceeding 30mA and chosen from the following types:

- Type B, or
- Type A [EV], or
- Type A, A[IR] or F, each in conjunction with a residual direct current detection device (RDC-DD) compliant with **CELIEC TS 62955** (additional DC leakage protection device which operates where a smooth residual direct current equal to or above 6 mA is detected)

Residual protection upstream of the charging points

In the power supply systems of charging points for electric vehicles there may be leakage currents towards earth with a smooth residual direct current. If these currents are of a sufficiently high value, they can blind or nullify the presence of the residual current circuit breakers installed upstream of the charging point (a risk that can occur if the cumulative earth leakage currents exceeds the 6mA foreseen by the IEC/EN 61008-1 Standard).

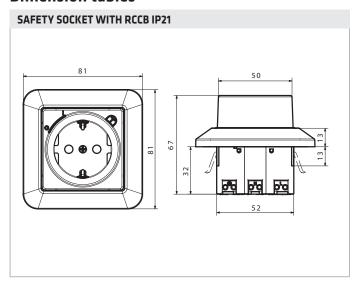

A blinded RCD does not guarantee correct automatic tripping in the event of a fault and consequently does not guarantee the safety of the system.

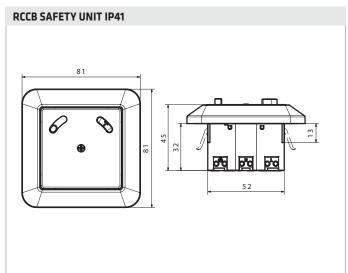

To avoid the blinding phenomenon, the RCD protection to be installed upstream of the charging points must:

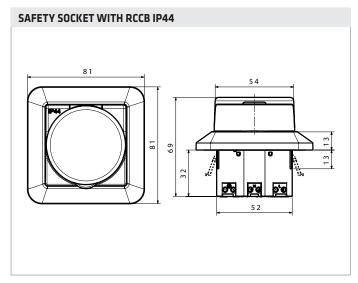
- be Type B, or
- respect the following coordination table between Gewiss RCDs. Based on the type of RCD protection installed upstream, the table shows the maximum number of residual current devices that can be connected downstream.

											ι	lpdtre	am R	CD (1)										
			N	ADC			IDP	25-63A		IDP		В	D			ВІ	OHP		MSXD		RE	LAY +	СТ	
		AC	Α	A[IR]/F	A[S]	AC	Α	A[IR]/F	A[S]	B[IR]	AC	Α	A[IR]	A[S]	AC	Α	A[S]	A[reg]	A [reg]	0,03A	0,1A	0,3A	0,5A	1A
Max number	IDP/ Autotest type B[IR]	-	-	-	3	-	-	-	3	no limit	-	-	-	3	-	-	2	2	3	-	-	2	4	8
of downstream RCDs (2)	type A[EV] type A + RDC-DD (IEC 62955)	-	1	6	30	-	1	6	30	no limit	-	1	6	30	-	1	25	25	30	2	8	25	40	80

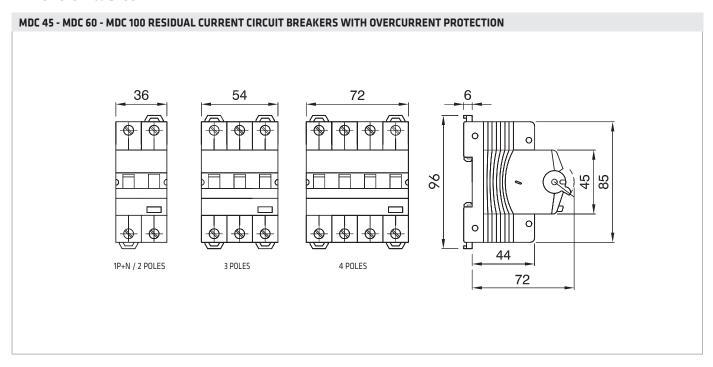
Example of RCD coordination for an electric vehicle charging system:

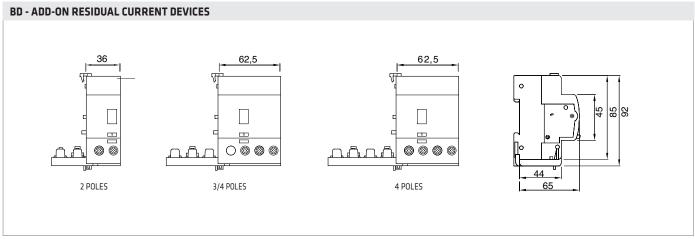

LOCAL RCCB

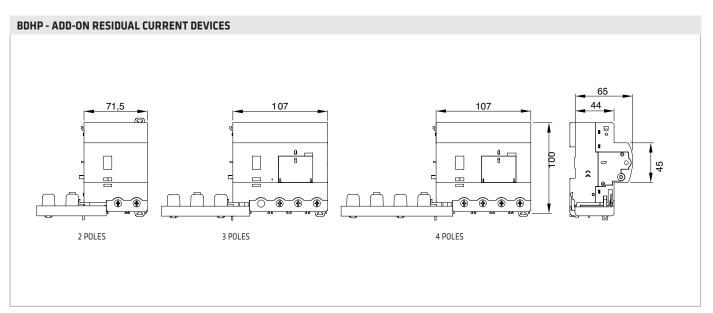

Technical data

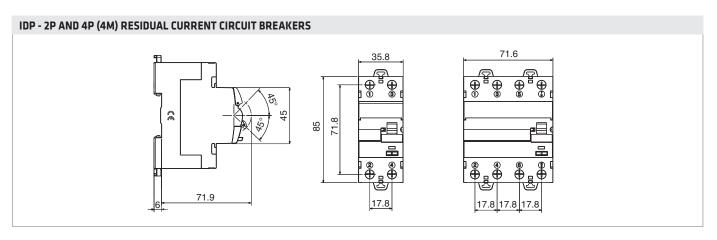

ТҮРЕ	SAFETY SOCKET WITH RCCB		SAFETY SOCKET WITH RCCB (WATER PROTECTED)		RCCB SAFETY UNIT		
	02.255 (3.255) (3.255) (3.255) (4.25) (5.255) (6.255) (7.25				S discuss S and S		
Standard	IEC EN 61008-1 IEC EN 61008-2-1 IEC 60884-1		IEC EN 61008-1 IEC EN 61008-2-1 IEC 60884-1		IEC EN 61008-1 IEC EN 61008-2-1		
Degree of protection	IF	IP21 IP44			IP41		
Type of installation		flush-mounting or surface-mounting (w			n installed inside the box GW95527 or GW95527N)		
Codes (white colour)	GW95521	GW95522	GW95523	GW95524	GW95525	GW95526	
Codes (black colour)	GW95521N	GW95522N	GW95523N	GW95524N	GW95525N	GW95526N	
Rated residual operating current (IΔn) (m/	10	30	10	30	10	30	
Rated current (In) (A	16						
Rated operational voltage (Ue) (V a.d	230 - 240						
Rated impulse withstand voltage (Uimp) (k)	0	4					
Overvoltage category	III						
Rated frequency (H	50						
Poles	1P+N						
RCCB type		A					
Level of immunity (8/20µs) (A)	250					
Residual making and breaking capacity (Idm) (A)	500					
Making and breaking capacity (Im) (A)	500					
Rated conditional residual short-circuit current (IΔc) ()	3000 (fuse gG 20A)					
Voltage independent working	yes						
Wiring cable rigid		min 1.5 - max 2.5					
section (mm²) flexible	min 1.5 - max 2.5						
Electrical endurance	2000						
Mechanical endurance	4000						
Type of terminal	Screwless						
Pollution degree	2						
Tropicalization		55°C - RH 95%					
Operating temperature (°	-	-25 ÷ + 40					
Storage temperature (°	-	-40 ÷ +70					
Weight (g) 1	155 165 145				15	

Dimension tables








Dimension tables

